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PREFACE

This document contains a collection of 21 papers presented at the AIAA/ASME/
ASCE/AHS/ASC/31 st Structures, Structural Dynamics and Materials Conference
held in Long Beach, California, April 2-4, I990. The conference had a total of
284 papers, including 263 full-length papers and 21 short presentations in the
work-in-progress sessions. All of the papers appearing in this document were
presented in the two work-in-progress sessions. Most of the full-length papers

are contained in the conference proceedings published by AIAA.

The fields covered by the conference are rapidly changing, and if new results
and anticipated future directions are to have maximum impact and use, it is
imperative that they reach workers in the field as soon as possible. This
consideration led to the decision to publish these proceedings prior to the
conference. Special thanks go to the members of the Research Information and
Applications Division at NASA Langley Research Center for their cooperation
in publishing this volume.

The use of trademarks or manufacturers' names does not constitute endorsement,

either expressed or implied, by the National Aeronautics and Space Administration.

Jean-Frangois M. Barthelemy
Ahmed K. Noor

Compilers
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TEST/SEMI-EMPIRICAL ANALYSIS
OF A

CARBON/EPOXY FABRIC STIFFENED PANEL

E.E. Spier and J.A. Anderson

Rohr Industries, Inc.

San Diego, California



Test/Semi-Empirical Analysi_

Since 1975, extensive testing of carbon/epoxy tape plates and

stiffened panels has been performed (Reference 1 through 6).

Attempts were made to predict the crippling failure of stiffened

panels, fabricated from C/Ep tape, using the non-linear option in

the STAGS computer code (Reference 7). However, no meaningful

results were acquired. Therefore, a semi-empirical crippling
method was developed.

To date, a semi-empirical analysis method has not been developed

for plates and stiffened panels manufactured from C/Ep fabric.

The purpose of this work-in-progress is to present a semi-

empirical analysis method developed to predict the buckling and

crippling loads of carbon/epoxy fabric blade stiffened panels in

compression. This is a hand analysis method comprised of well

known, accepted techniques, logical engineering judgements, and
experimental data that results in conservative solutions. In

order to verify this method, a stiffened panel was fabricated and

tested. Both the test and analysis results are presented.
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Bucklinq/Crippling Test Specimen

This figure shows the test panel configuration. It consists of a
skin with three blade stiffeners. The blade stiffeners contain

flanges which were cocured to the skin. The entire panel was

made from Hercules AS4/3501-5A carbon/epoxy fabric except for the

C/Ep tow used at the flange/blade intersection. This C/Ep tow

provides structural integrity at the joint, including significant

torsional stiffness provided at the blades.

The blade stiffened panel was completely A and C-scanned and no

defects were found. Prior to test, the panel was machined and

assembled with potted aluminum end channels. The end surfaces

were then ground parallel within .001 inch.

The unloaded edges of the outer skin elements were supported by

split rigid steel tubes to simulate simple support boundary

conditions. This isolates the three stiffeners as though they

were in a much wider stiffened panel. Thus, it was sufficient to

analyze just the middle stiffener and apply this result to all

three. The load carried by the skin adjacent to each split tube

was justifiably neglected because it is such a small percentage

of the total panel load.

.70

\
Potting

r
Aluminum Channel (Typ)

A

[-I I II I I I I t II I

I

I

I

L

I

I
L
I
b
I
J

I

I
f
I

I

I
I
I
I

7-

Split Steel Tube (Typ)

(Held on with Tape,

Not Shown)

\o
-._--- 3.5 ----_ *---- 3.5 ---_

__ .-1 -_ T_2,2 Typ Typ
._\ _ --,

\AJ
Section A-A



Detail A - Cross Section

This is the cross section of the stiffener/skin intersection. As

mentioned above, the region adjacent to the blade, between the

flange & skin, was filled with longitudinal carbon/epoxy tow.
This juncture provides substantial support to the skin and the
blades. However, the load carrying capability of the tow is

neglected in the analysis.

The panel elements were configured so that the skin buckled first

and the blades buckled second. Thus, the flanges, which buckle
last, support both the skin and the blades.
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Typical Blade/Skin Intersection

This is a photomicrograph of the manufactured stiffener/skin
intersection. Good consolidation was achieved and structural

integrity of this joint was expected. The curvature of the blade

middle plies was inadvertent, but no reduction of boundary

constraint was predicted.
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No-Edge-Free Postbuckling Test

In order to develop a semi-empirical stability analysis for

carbon/epoxy fabric stiffened panels, empirical buckling and

crippling curves for plates were generated. The plates tested

were symmetric and balanced C/Ep fabric laminates. Each test

plate was rectangular with clamped boundary conditions on the

loaded edges (i.e., the short sides). Various b/t ratios were

examined.

Two unloaded edge boundary conditions were tested. The first,

designated "no-edge-free", was simply supported on both unloaded

edges. The second, designated "one-edge-free", was simply

supported on one edge and free on the other.

This is a typical no-edge-free plate test in compression. The

unloaded edges are supported by steel v-blocks, simulating

simple-support boundary conditions. The test specimen is in a

postbuckled state. A full longitudinal wave can be seen.

3_,_.& AND WHII£ ?HOi0GRAVH



No-Edqe-Free Cripplinq Test

Postbuckling failure of the no-edge-free compression test

specimen is shown. This failure is referred to as "crippling".

The type of failure shown is typical for carbon/epoxy fabric

plates.

ORFG!N_E PAGE
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One-Edqe-Free Postbucklinq Test

This is a typical one-edge-free plate test in compression. One

unloaded edge is supported by a steel v-block, simulating a

simple-support boundary condition while the other unloaded edge

is free. The test specimen is in a postbuckled state. One

longitudinal half-wave can be seen.

I0
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One-Edqe-Free Cripplinq Test

Postbuckling failure (or crippling) of the one-edge-free
compression test specimen is shown. This type of failure is
typical for carbon/epoxy fabric plates.

BLACK /':_,,: _, _';;i L. i-_'i-i_.._,_:),._._-_!APH
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Typical load-Disvlacement Curve from CriDvlinu Test

This is a typical load-displacement curve for a plate compression
test, either no-edge-free or one-edge-free. Displacement refers

to the end-shortening of the test specimen. Buckling (pCr)

occurs at the bifurcation point of the linear curve. Crippling

(pCC) is the maximum postbuckling load that is reached prior to
failure.

Load

(kips|
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3

pCC

Displacement

J !
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No-Edqe-Free Buckling Graph

The no-edge-free buckling test data shown defines an empirical

buckling curve for composites with similar layups. The ordinate

is the ratio of the test buckling stress divided by the

_cr__cr.
calculated classical buckling stress (_ /_cl ) . The abscissa is

the width-to-thickness (b/t) ratio. The value for the classical

Fcr.
buckling strength ( cl ) can be obtained by using one of the

following equations.

* Simply Supported Unloaded Edges

!

Fcr,u,_E = 2_ [(D 1 )2
cl,i,ss _z ID22

+ DI2 + 2D66]

* Fixed Unloaded Edges

Fcr,u,_E = _2 [4 6 )
cl,i,fx _2 " (DIID22

+ 2.67(D12) + 5.33(D66)]

The classical buckling stress can be quite unconservative at low

b/t ratios. However, the classical theory is accurate at b/t

ratios greater than 50.
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One-Edge-Free Buckling Graph

The one-edge-free buckling test data shown defines an empirical

buckling curve for similar composite layups. The value for the

one-edge-free classical buckling strength can be obtained by

using the following equation.

Fcr,u, IE = -12D66 + _2DII

cl,i,ss tb 2 t(L,)2

where L' - L
(JC)

C is the end-fixity coefficient of columns and is approximately

equal to 3.6 for potted end columns in a test machine.

This graph and its use is similar to that for no-edge-free

composite plates. The discrepancy between classical and

experimental buckling at low b/t ratios is the result of low

transverse shear stiffness (Reference 8). This effect is

insignificant at large b/t ratios.
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Laminate Ultimate Compressive Strength

This figure shows the ultimate compressive strength (Fcu) for

AS4/3501-5A fabric 0 °, 45 ° composite laminates. This data was

generated because Fcu is required for the nondimensional

empirical crippling curves which follow.
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No-Edqe-Free Cripvl_nq Graph

The no-edge-crippling test data shown was used to define the
approximate mean crippling graph. The ordinate is the crippling

cr
stress (F cc) divided by the classical buckling stress (Fcl),

while the abscissa is the ultimate compressive stress (Fcu)

cr
divided by Fcl. Thus, for plates with similar layups, where the

cr
value for Fcu is known and Fcl can be calculated, the predicted

crippling stress may be obtained.
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One-Edge-Free crippling Graph

The one-edge-crippling graph shown is defined and utilized in a
similar fashion to that for the no-edge-free graph.
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Cripplinq Strength Predictions

Armed with the empirical buckling and crippling curves, a step by

step process can be used to calculate the crippling strength of

the middle stiffener's blade and flanges. The classical buckling

strains (c_ r'st) for the blade and flange elements are .00309

in/in and .00582 in/in, respectively. In this case, the blade

buckles first and causes the flange element to buckle

prematurely. Therefore, the minimum classical buckling strain is
equal to .00309 in/in.

The classical buckling strain is theoretical, not actual, and is

referred to as a pseudo-strain. Using this strain (.00309 in/in)

c ,u), the pseudo-buckling stresses
and the elastic modulus (ETh,I

Fcr,u
( , ,i) are calculated. The compression strengths (F cu'in,u) are

found from lamination theory or test results. The resulting

._cctu
pseudo-crippling stresses [_, ,i ) are then obtained from the one-

edge-free empirical crippling curve.

However, the empirical crippling curve was developed from testing

plates with simply supported boundary conditions. The actual

blade has a boundary condition better than simply supported but

certainly not fixed. Consequently, the boundary condition was

assumed to be equal to one-half the increase in fixity from

simply supported to fully fixed. This correction factor (Ca) is

only applied to the blade because the flange supports the blade

until it buckles, but at that point, the blade cannot provide

greater than simple-support to the flange. The crippling load of

the middle stiffener is obtained by summing the stiffener element

C pCC b _cc,f
pseudo-crippling loads ( a * ',i + 2P, ,i) "

I 2 4 5 6

c Cr, St FOr, U FCU, u
, . i = 3 "4 n. I

ELEMENT Au c. u
i [Th, i

(in. 2) (psi) (psi) (psi}

BLADE 0,326 7.60 x 106 0.00309 23,457 73,000

FLANGE 0.062 7.47 x 106 0.00309 23.082 69,000

7 8 9

CU.u cr.u FCC FCr.u
Fn .i /F, ,i = 6 / 5 / " ,i

3.]I ].19

2.99 ].18

Fcc.u

=5"8

(psi)

29.913

27,237

]0

pCC .u

" ,i : 2.9

9.100

].689

11 12

pCC.U
Ca Ca • ,i

= ]0 ' 11

(11:,)

13,650
].5

] ,0 ] ,689
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Effective-Width from Compressive Stress Distribution in a

Buckled Flat Plate

In order to calculate the crippling strength of the panel, the

skin, which buckles first, must also be considered. This

requires an effective-width concept which was originally

developed for metal structures by T. yon Karman (Reference 9).

,es) ,In this method, a uniform compressive stress ( c ,i at the same

average strain as the stiffener at crippling, acts on a width of

plate w esi directly adjacent to the supported edges. The value of

w_ s is adjusted so the (ac',i ( i )*es),._es (t_ k) is equal to the total1

load carried by the skin on one side of the stiffener. Thus, for

a skin having the postbuckled distribution shown, the effective-

width can be found using von Karman's equation. The value of

(ac, es)
,i depends upon the magnitude of the applied design load or,

in the case of analyzing a tested panel, the failure load.

es

_ W i

/Boundaw
Suppod

c,es
o ,i

I I F cr,sk
cl,i

sk l
b i '_

Effective-Width Equation (yon Karman):
es sk cr,sk,¢E c,es

w i = (b i /4) [1 + (F cU,fx /o ,i )]
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Middle Stiffener with Skin Effective-Widths

The detail buckling and crippling analysis is directed at this

cross section. The calculations focus on only the middle

stiffener which carries one-third of the total load up to

crippling. The predicted crippling load of the middle stiffener

and skin is equal to the summation of the stiffener element

pseudo-crippling loads and the effective-width skin load.

pCC,Ses pCC,b pCC,f + pC,es
* ,i = [ Ca( . ,i ) + 2( . ,i ,i )]

A

pC,es = (ac,es _s) _ i )',i ,i )*(w *'t sk where w es fw es f1 = " i - b )

Pertinent dimensions and effective-widths are shown.
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Strain Gaqe Locations on stiffened Panel

Before the analytical results are presented, an examination of

the test data is required. This examination includes a review of

strain gauge locations, an investigation of strain results, and

finally, photographs of the test panel at different stages of

postbuckling.

Twenty-four strain gauges were mounted on the test panel. Only

those gauges that were actually used in the evaluation are shown.

Test results indicate that compressive strain was uniform up to

skin buckling. In addition, buckling of stiffener elements

(i.e., blade and flanges) was also detected.

IFi _I I

Jl

-+

l

f

I

l

i
I

I

I

I

I

I
I

I
-Y

I
10N

9F

9N

2'

I II J
I
I
I
I
f
I
I
IIi
t

I

,,'__;
1 I

"1"-

_L
4N 3N lo_m n 2N 1N ,_- . . - _ - , - ,_)

3F 10F 1F -

Section A-A

21



Load/Strain Curves Across Panel

Uniform strain was found in the central panels up to skin
buckling as shown by gauges IN through 4N. Although one of the

outer panel gauges (IN) is displaced from the others, it has the
same slope. These gauges indicate that the applied compression
load was uniform.
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Back-To-Back Load/Strain Plots in Inner Skin Panel

The postbuckling behavior of the inner panels, based upon gauges

3N & 3F, was moderately nonlinear. This plot indicates that

buckling occurred between 20,000 Lbs and 25,000 Lbs.
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Back-To-Back Load/Strain Plots in Outer Skin Panels

The postbuckling behavior of the outer panels, based upon gauges
IN & IF, was quite nonlinear. This plot indicates that buckling
occurred between 22,000 Lbs and 24,000 Lbs.

4.0--

3.0--

2.0-
e_

1.0--

1F/ \/

ff/
/

/

\
1N

0.001 0.002 0.003
Strain

24



Back-to-Back Load/Strain Plots at Tip of Middle Blade

The lateral buckling of the middle stiffener's blade is indicated

by the plot of back-to-back gauges 9N and 9F. Initial buckling

appears to occur at a panel load of about 32,000 ibs, where the

postbuckling behavior is slight up to a load of about 42,000 ibs.

Beyond this load level, significant buckling deformation begins.
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Back-To-Back Load/Strain Plots on Flanqe of Middle Stiffener

The behavior of one of the stiffener flanges is shown by the
back-to-back gauges 10N and 10F. The load-strain plots are

nearly linear up to a panel load of approximately 40,000 ibs.
Buckling becomes quite evident at a panel load of about 45,000

ibs, which is slightly greater than that previously shown for the
blade.
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Postbuckling Behavior of Blade-Stiffened Panel at 48,000 Lbs

The compressive load on the stiffened panel is 48,000 ibs. At

this load, strain gauges indicate that both the skin and blades

have buckled. Note that the split steel tubes have been mounted

on the outer unloaded edges.

i!

il il
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Postbuckling Behavior of Blade-Stiffened Panel at 55,600 T_

At 55,600 ibs., the buckling of the skin, and particularly the

blades, has become quite severe. However, out of plane

deformation will become much greater before crippling occurs.

I:_!-,':'CK "_"_" :",i _', ;_":_-_'"'_;_-_:'H
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Postbucklinq Behavior of Blade-Stiffened Panel at 67,750 Lbs

The crippling load of the stiffened panel was 67,750 pounds. The

failed specimen is shown after being removed from the test rig.

Note the severe crimping of the skin and the extensive

delamination of the left blade. The postbuckling forces of the

outer skin panels also severely bent the steel split tubes.

! i ......L:
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Stability Analysis Boundary Conditions

For completeness, buckling and crippling predictions were
obtained for two boundary condition configurations.

Configuration A represents simply supported boundary conditions.
Configuration B represents boundary restraint between simply
supported and fully fixed. The results are presented in the

following table.

Skin

Blade

Flange

Configuration A

Both Edges Simply Supported

One Edge Simply Supported
One Edge Free

One Edge Simply Supported
One Edge Free

Skin

Blade

Flange

Configuration B

Both Edges Fixed

One Edge Simply Supported/Fixed
One Edge Free

One Edge Simply Supported
One Edge Free

Flange

Skin
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A Comparison of Test and Analysis Results

This table shows the comparisons between test and analysis for

the configurations just defined. The analysis is conservative

for both configurations. However, Configuration B provides much

closer agreement between test and analysis for both buckling and

crippling. The predicted buckling strength is about 12%

conservative and the predicted crippling load is about 17%
conservative.

In conclusion, a test to failure of a blade-stiffened

carbon/epoxy stiffened panel has been presented. Axial strain

gauges were employed to verify uniformity of axial strain prior

to any local buckling. In addition, back-to-back axial strain

gauges were used for detection of initial buckling and

postbuckling behavior of the skins, blades, and flanges. The

stiffened panel behaved as designed. The skins buckled first,

the blades second, and the flanges last. In the analysis, it was

assumed that crippling of a blade occurred first, where initial

failure would be at the supported edge, the location of maximum

compressive stress. A videotape of the test was made, and it

appeared that failure did indeed start at one of the blade/skin
intersections.

Stability
Mode

Buckling

Crippling

Test

Result

Load

(Lb.)

_-23,000

67,750

Analysis

Configuration A

Load Difference

(Lb.) , (%)

12,600 45
!

41,000 39

Configuration B

Load

(Lb.)

20,200

56,300

Difference

(%)

12

17
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Symbols and Abbreviations

Au
1

b

b/t

b
b i

b.
1

b. sk
1

C

Ca

D,o

13

E c ,U
Th,i

F cc

FCC,U
* ,i

F cr

F cr
cl

cr,sk
Fcl,i

Fcr,u
* ,i

area of element "i", type "u"

blade

width over thickness ratio

Height of blade element "i"

width of flange element "i"

width of skin element "i"

end-fixity coefficient of column: approximately equal to

3.6 for potted end columns in a test machine

correction factor for edge support of blade and
stiffener

flexural/twisting stiffness terms of laminated plate

in-plane compression modulus of element "i", type "u"

crippling stress (psi)

_xpected crippling stress of element "i", type "u"

buckling stress (psi)

classical buckling stress (psi)

classical buckling stress of skin element "i"

expected buckling stress of element "i", type "u"

Fcl,i,ssCr,u,_Eclassical buckling strength of a long plate type "u"

element "i" with simply supported unloaded edges
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Symbols and Abbreviations

F cr'u'_E classical buckling strength of a long plate type "u"
cl,i,fx

element "i" with fixed unloaded edges

Fcr,u, IE
cl,i,ss

F cu

classical buckling strength of a long plate type "u",

element "i" with one simply suppported unloaded edge

ultimate compression strength (psi)

Fcu,u
n ,i

ultimate compression strength of element "i"

and data type "n"

, type "u"

element number (i.e., each stiffener has 1 blade, 2

flanges and 2 skins)

L column length

n ! effective column length (L '= L + JC)

n data type (i.e., empirical "Em", classical "cl", or

theoretical)

pC,es
,i

compression load in effective skin element "i"

pCC crippling load (ibs)

expected crippling load of blade element "i"

expected crippling load of flange element "i"

expected crippling load of stiffener/effective skin

element "i"

pCr buckling load (ibs)

t thickness (inch)

tsk
1

thickness of skin element "i"

u element type (i.e., blade "b", flange "f", stringer

"st" skin "sk" effective skin "es" stiffener/skinf 8 f

"sts", stiffener/effective skin "ses", panel "p")
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Symbols and Abbreviations

weS
1

w.es
3.

cr,st
6,

effective width of skin element "i"

effective width of skin element "i" excluding the width

of the adjacent stiffener flange

expected buckling strain of stiffener element "i"

c,es
o i

I

compression stress of effective skin element "i"
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REPEATED BUCKLING OF COMPOSITE SHEAR PANELS

SUMMARY

Failures in service of aerospace structures and research at the Technion

Aircraft Structures Laboratory have revealed that repeatedly buckled stiffened

shear panels might be susceptible to premature fatigue failures. Extensive

experimental and analytical studies have been performed at Technion on repeated

buckling, far in excess of initial buckling, for both metal and composite shear

panels with focus on the influence of the surrounding structure (see for example

Refs. 1 and 2).

The core of the experimental investigation consisted of repeated buckling and

postbuckling tests on "Wagner beams" in a three-point loading system under

realistic test conditions. The effects of varying sizes of stiffeners, of the

magnitude of initial buckling loads, of the panel aspect ratio and of the cyclic

shearing force, Vcy c, were studied. The cyclic to critical shear buckling ratios,

(V /V ) were on the high side, as needed for efficient panel design, yet all
cyc cr

within possible flight envelopes. The experiments were supplemented by analytical

and numerical analyses.

For the metal shear panels the test and numerical results were synthesized in

Ref. 2 into prediction formulas, which relate the life of the metal shear panels to

two cyclic load parameters: the (working/buckling) load ratio, (Vcyc/Vcr), and the

(ultimate/working) load ratio, (Vult/Vcyc), which reflects the working load level

in the flight envelope, and one geometrical parameter: the (plate/stiffener)

stiffness ratio, (b3t/If). It was also found there that the level of shear load,

at which local yielding first takes place, V dominates the endurance of the panel,
Y

and hence the life predictions could be expressed in a simpler manner, in terms of

a single load ratio (V /V ).
cyc y

The composite shear panels studied were hybrid beams with Graphlte/Epoxy webs

bonded to aluminum alloy frames (see Fig. I). The test results (see Refs. 3 and 4)*

demonstrated that composite panels were less fatigue sensitive than comparable

metal ones, and that repeated buckling, even when causing extensive damage, did not

reduce the residual strength by more than 20 percent. All the composite panels

sustained the specified fatigue life of 250,000 cycles. The extent of damage

depended on the working load level Vcyc, but no matter how pronounced it was it did

not affect the fatigue life and did not result in immediate catastrophic failure

(see Fig 2 for damages in a typical test)

*See reference list.
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The effect of local unstiffened holes on the durability of repeatedly buckled

shear panels was studied for one series of the metal panels (see Ref. 5). Tests on

2024 T3 aluminum panels with relatively small unstiffened holes in the center of

the panels demonstrated premature fatigue failure, compared to panels without

holes. Even very small holes (of 3 mm diameter and less) caused very significant

reductions in fatigue life, already at a relatively low load level, for which no

fatigue failure is predicted in the case of similar unperforated panels. The holes

caused a shift in the mode of the fat[gue failure, initiating now instead of in the

corners of the shear web in its center (see Fig. 3). Holes with initially

introduced cracks were compared with smooth ones, the former exhibiting more

pronounced life degradation, especially for the smaller holes.

Preliminary tests on two graphite epoxy shear panels with small holes in the

center showed no similar fatigue life degradation and no shift in failure mode _see

Fig. 4). Further tests on the effect of holes are in progress.

I.

.

.

_4.

5.
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Figure I. Wagner beams tested (all dimensions in millimeters).
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OF ZOOR q'J,i.i/_,LIT_'

Figure 2. Typical failure mode of a graphite/epoxy panel (H-WB 6A], dynamically

loaded through two complete "fatigue lives" o£ 250,000 cycles each, and

then tested statically from (Weller & Singer, 1990).
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Figure 3. Fatigue failure of

2024 T3 aluminum alloy shear

panel, with a central hole of

4 mm diameter (WBL 6A), after

137500 cycles at V =1200 kg.
cyc

The failure occurs as a crack

perpendicular to the tension

diagonal initiating at the

ii!_, hole (two initial cracks made

.... ,,,,,,,,,_rrr, ,i................................... ::::_;__ matters worse here).

=12.o  cj,

o

Figure 4. Fatigue failure of

a graphite/epoxy shear panel

(HWB 13A), with a central

hole of 4 mm diameter, after

250,000 cycles at V =1200 kg.
cyc

The failure occurs as cracks

alon_ the tension diagonal,

emanating from the stress

concentrations at the

corners, as in unperforated

shear panels.
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Coordinates and geometry of a composite laminate

with a central circular cutout under compressive loading

The composites studied are fiber-composite laminate plates made of carbon

fibers and a thermoplastic-matrix material. The elastic properties of the

lamina are: Eli - 15.6 x 108 (psi), E22 = 0.9 x 106 (psi), vlz = 0.313, G1z =

G13 = 0.77 x lO s (psi), and Gz3 - 0.31 x 108 (psi). The plates have a square

geometry with a length of 12 (in), a cutout diameter of 2 (in) and a constant

lamina thickness of 0.005 (in). A [0/90/±45]n s layup is considered. Biaxial

loading is applied in the form of uniform displacements along the edges of the
laminates.

z,W
y,V

Nx Ny

t

Ny N×

x,U
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Solution convergence for transverse shear Qx at (-3.,-3.) (in)

in a clamped [0/90/±45]12s plate without cutout

under blaxlal compression (Nx/Ny = 2, t/L = 0.04)

The transverse shear force Qx is the resultant of Zxz integrated over the

laminate thickness. Qx is interpolated at (-3.,-3.) (in) from the values at

the four Gaussian points of the element containing this location (using a

bilinear interpolation). Three finite-element meshes are considered.

009

0.08
t/L = 0.04
L =_2 (in)
N×,/Ny = 2

0.07

0.06 location of Ox: (-3.-3.) in

d

0.05

C04

003

0.02

_'_'*÷* 25 elements
81 elements

B_ 169 elements

0.01

008.00 050
I I

2.00
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Effects of cutout and laminate thickness on maximum shear Qx

in buckling and postbuckling response of a clamped [0/90/±45]n s plate

under biaxial compression

Without cutout, IQx maxl is located at (±3.3,0.) for t/L = 0.02 and t/L =

0.04, and also for t/L = 0.06 and t/L = 0.08 before activation of higher (i.e.,

second and third lowest) modes takes place for these two thickness/length

ratios (beyond N x = 1.7 Nxc r and N x = 1.5 Nxor, respectively). After

activation of higher modes, the location is at (±6.,±4.7) for t/L - 0.06 and

t/L =0.08.

With cutout, IQx maxl is located at (±3.5,±1.8) for t/L = 0.02 and t/L = 0.04,

and for t/L = 0.06 before activation of higher modes (N x < 1.7 Nxcr).

However, for t/L = 0.08, IQx maxl is located at the hole free edge at

(0.38,±0.92) before activation of higher modes. After activation of higher

modes for t/L = 0.06 and t/L =0.08, the location is at (±6.,±4.7).
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Effects of cutout and laminate thickness on maximum shear Qy

in buckling and postbuckling response of a clamped [0/90/±45]ns plate

under blaxlal compression

Without cutout, IQY0m=_]06 is located at (0.,±6.) for t/L = 0.02 and t/L = 0.04,
and also for t/L = . and t/L = 0.08 before activation of higher modes takes

place (beyond N X = 1.7 Nxc r and N x = 1.5 Nxc r, respectively). After

activation of higher modes, the location is at (0.,±4.7) for t/L = 0.06 and

t/L =0.08.

With cutout, IQy maxl is located at (0.,±6.) for all four thickness/length

ratios considered. Activation of higher modes for t/L = 0.06 and t/L = 0.08

does not change the location of IQy maxl-

0.90

L = i2 (in)
N×/Ny = 2

I

I poslbuckling

buckling

d/L = 0
d/L 1/6
d/L 0
d/L 1/6
d/L 0
d/L 1/6
d/L 0
d/L 1/6

1.50 200
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Effect of mesh refinement on buckling and postbuckling solution convergence

for a clamped plate [0/90/±45124s without cutout

under biaxial compression (Nx/Ny = 2, t/L = 0.08)

For this thick laminate, activation of second and third lowest eigenmodes

takes place beyond N x = 1.5 Nxcr, but no change in buckling mode occurs as the

structure gradually loses its stiffness and becomes unstable.

20

1.5

E

x
Z

05

o.8 

L = 12 (in)
N×/N

_.-._-._25 elements
I_ _ 36 elements
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0.05 0.10 0.1

U/L
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Effects of cutout and laminate thickness of lowest three elgenvalues

of a clamped [0/90/±45]n s plate under biaxlal compression (Nx/Ny = 2)

The eigenvalue parameter (k Nxo L 2 / Dzz) is defined in such form that the

lowest eigenvalue would have the same value for all thickness/length ratios if

transverse shear *as not present. This parameter is plotted with respect to

the thickness/length ratio.
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Effects of cutout and laminate thickness on buckling and postbuckllng

response of a clamped [0/90/±45]n s plate under biaxial compression

(Nx/Ny = 2)

The load parameter (Nx L2 / Dzz ) is defined in such form that buckling would

occur at the same value for all thickness/length ratios if transverse shear

was not present. Likewise, the strain parameter U L / tz is such that all

load/end-shortening curves for the cases with cutout and for the cases without

cutout are identical prior to buckling, respectively.
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Effect of imperfection sensitivity on transverse shear Qx at (-3.,-3.) (in)

in a clamped [0/90/±45]12s plate without cutout

under blaxial compression (Nx/Ny = 2, t/L = 0.04)

Three imperfection magnitudes (with respect to the laminate thickness) are

considered: 0.1%, 1% and 10%. The imperfections are made of a linear

combination of the normalized three lowest eigenmodes. The resulting

imperfection geometry is close to the first eigenmode (buckling mode).
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Effect of imperfection sensitivity on buckling and postbuckling response

(with a change in buckling mode) of a clamped [0/90/±45]12s plate

without cutout under uniaxial compression (Ny = 0, t/L = 0.04)
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Effects of boundary conditions and stress-blaxiallty ratio

on maximum transverse shear Qx in a clamped [0/90/±45]12 s laminate

without cutout (t/L = 0.04)
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Effects of boundary conditions and stress°blaxiality ratio

on maximum transverse shear Qy in a clamped [0/90/±45]12 s laminate
without cutout (t/L _ 0.04)
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ABSTRACT

A continuous fiber composite is modelled by a two-element composite

cylinder in order to predict the elastoplastic response of the compos-

ite under a monotonically increasing tensile loading parallel to fib-

ers. The fibers and matrix are assumed to be elastic-perfectly plastic

materials obeying Hill's and Tresca's yield criteria, respectively. The

present paper investigates the composite behavior when the fibers yield

prior to the matrix.

INTRODUCTION

The elas_oplastic response of fibrous composites has been the subject of a

number of theoretical studies[l-4]. When a composite is subjected to uniaxial

tension loading parallel to the fibers, a two-element composite cylinder(Figure

l-a) has been frequently utilized to model the composite response. The loading

direction together with the axisymmetric geometry of the representative volume

element simplify the mathematical difficulties associated with the equilibrium

equations. By implementing a traction-free boundary condition to the outermost

surface of the representative volume element, it becomes possible to construct a

well-posed boundary value problem when the fibers and the matrix are assumed to

obey Hill's and Tresca's yield criteria, respectively. A closed form anslytical

solution requires further simplifications such as elastic-perfectly plastic con-

stituents, perfect interfacial bonding, etc. When the composite constituents are

assumed to obey the modified yield criterion proposed by Hill[l], the hardening

effect of the matrix can be taken into account without mathematical difficul-

ties. However, the present study focuses on a composite with non-hardening con-

stituents.

fiber _atrix(a) _i . (b)

Figure I. Continuous Fiber Composite

(a) Representative Volume Element

(b) Cross section
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Hill proposed a relatively simple yield criterion which assumes the differ-

ence between the axial stress and the arithmetic mean value of the radial and

circumferential stresses to be equal to the yield stress[l]. When this yield

condition is implemented to a composite with elastic fibers surrounded by an

elastic-perfectly plastic matrix, the entire matrix yields simultaneously,

resulting in a discontinuity in the slope of the effective stress-strain curve.

Mulhern, Roger, and Spencer[2] proposed a rigorous analytical solution for a

two-element composite cylinder under cyclic loading. Their study models an elas-

tic core fiber surrounded by an elastic-perfectly plastic matrix tube obeying

Tresca's yield criterion. The resulting composite behavior is almost as bilinear

as Hill's solution. However, the slope of the effective stress-strain curve is

continuous because the plastically deformed matrix zone propagates from the

fiber -matrix interface to the outer surface of the matrix.

Ebert and Gadd[3] studied a similar problem for an elastic-perfectly plastic

core fiber surrounded by elastic matrix. Ebert, et al.[4] extended this to an

elastic-perfectly plastic matrix. However, the application of their numerical

solution is restricted to a composite in which the Poisson's ratios of the fiber

and the matrix are equivalent.

The present paper extends the study of Ebert and other authors[3,4] to a

two-element composite cylinder representing a transversely isotropic fiber sur-

rounded by an isotropic matrix in which the Poisson's ratios of the core fiber

and the matrix need not be identical.

MODEL FORMULATION

Consider a metal matrix composite reinforced by continuous fibers under uni-

axial tension loading parallel to the fibers. The globally averaged stress state

of the representative volume element is assumed to be one dimensional. The elas-

tic-plastic response of the bar can be analytically predicted by solving an

equivalent boundary value problem of a single core fiber which is perfectly

bonded to the surrounding matrix tube. The volume element representing the

equivalent boundary value problem is illustrated in Figure I. The uniaxial ten-

sion loading in the fiber direction produces a three dimensional stress state in

both the core fiber and the surrounding matrix. When the tension loading

increases monotonically, either the fiber or matrix yields at a certain magni-

tude of the applied tension loading. Further increment of the tension loading

induces the yielding everywhere in the composite. The possible yield sequences

for the composite constituents of the representative volume element can be cate-

gorized into three cases as shown in Figure 2. The present study provides ana-

lytical solutions to the first case under monotonically increasing tension load-

ing.

i

I CASE1 I

!

i  iberyieldIpartial matrix yield

entire matrix yield

elastic fiber - elastic matrix I

I I
partial matrix yield I i partial matrix yield

entire matrix yield I I fiber yieldfiber yield entire matrix yield I
Figure 2. Possible Composite Yield Sequences
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The entire mathematical formulation of the present study is based on the

following key assumptions:

i. The core is assumed to be a transversely isotropic fiber surrounded by an

isotropic matrix.

2. Both constituents are assumed to be elastic-perfectly plastic.

3. The interfacial bonding between the core fiber and the matrix is assumed to

be perfect throughout deformation.

4. The core fiber is assumed to obey Hill's yield criterion.

5. The matrix tube is assumed to obey Tresca's yield criterion.

6• The axial strain is assumed to be spatially homogeneous•

Since the geometry of the representative volume element is axisymmetric and

the loading direction is parallel to the core fiber, the only non-trivial

equilibrium equation is

8a r Or-O 8
__ +

ar r

- o (1)

The constitutive equations for the transversely isotropic core fiber and the

isotropic matrix are

• f p. f.
e r - er I/E T -UTT/ET -VLT/E L- c r l

f p

-£Z- £Z

• -WTT/ET

_- WLT/EL

I/E T -ULT/EL

-_LT/EL 1/E L

fl
• c 0 I" (2-a)

f!

C Z,

and

.nk m p,

orl 1-_ m v m Cr-er[

ml

drZ9

E m

l+_m)(l-2_ m)

Vm ]

I

m Pl
Um l-_m Vm _ c_-cOr (2-b)

u m u m l-w m

respectively.

Since the plastic strain is incompressible,

P P P
E r + ¢# + ez = 0 (3)

It can be shown that Hill's yield criterion becomes the following yield condi-

tion for the transversely isotropic core fiber under a transversely isotropic

loading:

f f f f

[ az °r [ = [ °z aO [ = YL (4-a)

This mathematical expression is identical to Tresca's yield criterion.
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The surrounding matrix will yield according to one of the following conditions.

m m

[ °z ar I = Ym (4-b)

m m

I °z °8 I = Ym (4-c)

m m m m

I o -°r I = I = Ym (4-d)

The external boundary conditions and interior compatibility are

o r = 0 at r = b (5-a)

o r = unique at r = a or r = a, c (5-b)

u r = 0 at r = 0 (5-c)

u r = unique at r = a or r = a, c (5-d)

When both fiber and matrix responses are elastic, the stress state and the

displacement field in the representative volume element are determined by match-

ing the radial stress and displacement at the fiber-matrix interface. The prob-

lem solving procedure for this elastic deformation is simple and straightforward

as discussed below.

Since the stress state in the fiber is always transversely isotropic,

f f

_r = °8 = -P (6-a)

f

o z = -2_LTP + ELe z (6-b)

where P is an unknown constant to be determined. The radial displacement in

the fiber is given by

u r = Clr (7-a)

The strain components become

f f

e r = c_ = C I 7 -b)

From (2-a),(6), and (7-b),

C I = -[(I-_TT-2VLT_TL)P/E T + _LTez]r 8-c)

Within the matrix,

m pa2 [ b2]
o r = -- i --

b 2 _a 2 r 2

9-a)
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mpa2[b2]a# I +--
b 2 _a 2 r 2

m 2P_m a2

+ Emc z
_z - b2_ a2

m

u r = C2r + C3/r

The strain components become

(9-b)

(9-c)

(10-a)

m

_r = Ur,r = C2 C3/r2
(lO-b)

m

4 8 = ur/r = C 2 + C3/r 2

From (5-a) and (5-b), C 2 and C 3 are determined as functions of P.

pa2(l+_m)(l-2_m )

C 2 =

Em(b2-a 2 )

pa2b2(l+_m )

C 3 =

Em(b2-a 2 )

_mfz

lO-c)

(ll-a)

(11-b)

Then the radial displacement in the matrix becomes

U r

pa2(l+_m )

Em(b2-a 2 )

[(l-2wm)r+b2/r] WmCz (12)

The interfacial stress in the radial direction, -P, is determined from

the displacement compatibility given by (5-d).

(_m-_LT) cz

_p _ m

A 1
where

A 1 = I-_'TT-VLT_'TL]

ET J
a (I )]

(13-a)

(13-b)

It can be shown that the effective axial Young's modulus of the volume element

is given by

Ec = EL(a/b)2 + Em(b2_a2)/b 2 + 2(a/b)2(Wm-WLT)2/Al (14)

Under monotonically increasing axial strain, c z , either the core fiber or the

surrounding matrix yields first. The yield strains, strengths, and the Poisson's

ratios of the constituents govern the composite yield sequence. When the applied

axial strain reaches a certain value, Ezy, the core fiber yields first if the
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longitudinal yield strength of the fiber is much smaller than the yield strength

of the matrix. The initial yield strain, Czy, at which the entire fiber yields

is given by

Y_[ (Vm-WLT) (I- 2WLT) ]
Czy = 1

ELA 1 +(Wm-WLT)(l-2VLT)

(15)

After the core fiber yields, the surrounding matrix behaves elastically

until matrix yield at the interface occurs. Since the plastic strain is incom-

pressible and the stress state is transversely isotropic in the core fiber,

stresses, total strains and plastic strains in the fiber become

f f f

ar = o8 = -P, °z = -P + YL (16-a)

P P cP/2z (16-b)c r = E 8 = -

f f f f

cr = _ = Ur, r = Ur/r (16-c)

where -P is the unknown interfacial stress to be determined.

f f f

The first strain invariant, Cr+C_+(z, together with the uniqueness of the

radial displacement at the material interface determine the magnitudes of the

fiber stress components as functions of the applied axial strain. During this

strain increment where the matrix still deforms elastically, the stress compo-

nents and the radial displacement in the matrix given by equations (9-a), (9-b),

and (9-c) are still valid if the interfacial stress in the radial direction is

redefined as

°

P _ -_I_2 (l-2_m)(z-(1-2_LT)

_I+2_2[
where

= Em [ (b2-a2)/a2 ]

(17-a)

(17-b)

72 =

ET

2-2_TT'4_TL+VTL/_LT

(17-c)

The radial displacement in the fiber becomes

f [_mNl+_2 -u r = _

[_I+2_2

(I-2_LT)U2]YLE z r + -- -- r

[ _i+2_2 JEL

(18)

Further increase of the applied axial strain causes yielding of the matrix

material. The plastically deformed region then propagates toward the outer sur-

face of the matrix. During this strain increment, the elastically deformed mat-
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rix and the plastically deformed matrix exist together as shown in Figure l-b.

Outside the interface between the plastic matrix and elastic matrix, the stress

state and deformation are given by the elasticity solution with an unknown

internal pressure, P*, acting on the interfacial surface between the plastic

matrix and elastic matrix. Therefore, within the elastically deformed matrix,

b2-c2 L r2J

(19-a)

(19-b)

m 2P*um c2

+ EmEz (19-c)
a z = b2_c 2

m p*c2(l+um )

Ur = [(l_2_m)r+b2/r] Wm_z r (20)

Em(b2-c 2 )

where P* is determined from Tresca's yield criterion given below.

At r = c,

Then,

p* =

m m

laz-arl = Ym , for _m>_LT (21-a)

ma_l = Ym , for Vm<_LT (21-b)

(Ym-Emcz)(b2-c2)/c 2

2_ m - (b2+c2)/c 2

(22)

where c is an unknown function of the applied axial strain, E z.

Within the plastically deformed matrix, Tresca's yield criterion given by

eqs. (21-a) and (21-b) determines the stress state and displacement field. If

the Poisson's ratio of the matrix is smaller than that of the fiber, the fiber-

matrix interfacial stress in the radial direction is always tensile. On the

other hand, when the Poisson's ratio of the matrix is greater than that of the

fiber, the fiber-matrix interfacial stress may be either compressive or tensile.

After the core fiber deforms plastically, the apparent Poisson's ratio of the

fiber approaches 0.5 as the applied axial strain increases. The interfacial

stress in the radial direction may be changed from compressive to tensile before

the initiation of matrix yield. If the matrix yield strain is far greater than

that of the core fiber, the interfacial stress in the radial direction at the

onset of matrix yield becomes tensile. Then, from eq. (3) and (4-c),

P P P (23)
E r = O, c8 = -c z

m m m Em m m m

a 8 + e z = 20_ + Ym = (2VmCr + E8 + Cz) (24)

(l+wm)(l-2_ m)
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From eq. (24) and the strain-displacement relationships, the radial and circum-

ferential stresses are expressed in terms of the radial displacement and its

gradient with respect to r.

m Em m m m

o r = [(l-_m)Ur, r + UmUr/r + Um_z ] (25-a)

(l+_m)<l-2_ m)

m Em/2 m m m

_ = (2_mUr, r + Ur/r + Cz) - Ym/2 (25-b)

(l+wm)(l-2u m)

The equilibrium equation thus becomes

2 m m

2(imum)r Ur,rr + 2(l-um)rUr, r

m

Ur = -r(l-2wm)[(l+wm)Ym/Em - _z]

The solution to the above differential equation is given by

(26)

m

u r = -[(l+_m)Ym/E m - _z]r + C2 rk + C3r-k (27)

where

k = [2(l-wm)]-I/2

Since the radial stress and displacement must be single-valued at r=c and

r=a, the unknown constants are determined as

-(l+vm)<Em_z-Ym)b2c °(k+l)

C 2 = (28-a)

kEm(l-2_m+b2/c 2 )

(l+um)(Emcz-Ym)b2c (k-l)

C 3 = (28-b)

kEm(l-2wm+b2/c2)

The radius of the matrix yield front, c, can also be determined as a function of

the applied axial strain, _z, and material properties. However, it is more

convenient to express the applied axial strain as a function of the radius of

the matrix yield front by satisfying the uniqueness of the radial displacement

at the fiber-matrix interface. Until the yield front reaches the outermost sur-

face of the matrix tube, the axial strain is given as

Ym

£Z = -- -

E m

where

Ym YL

(l-2um)__ - (I-2ULT)_

E m E L

l-2_m+242(l+vm)-

Em41

_2(i-2_ m)

(29-a)
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(b/c)2[(l-um+um/k)(a/c)(k-l)+(l-um-um/k)(a/c) -(k+l) ]

_i = i - (29-b)

I - 2u m + (b/c) 2

(b/c)2[(a/c)(k-l)-(a/c)-(k+l)]/k

_2 = 1 - (29-c)

1 2u m + (b/c) 2

After the entire matrix yields, it can be shown that eqns. (28-a) and (28-b)

should be corrected for further axial strain increment as

l-(l-2N2/_2)(a/b)-(k+l)
l-2u m

3_2](Em_z-ym)

EmJ

_3

C 2 = (30-a)

_la(k-l)[(l-2_2/_2)(a/b) -2k (I-2N2/_I)]

i- (i- 2_2/_i) (a/b) (k-l)
1 - 2u m

3N2](Emcz-ym)

EmJ

_3

C 3 = (30-b)

_2a-(k+l)[(l-2_2/_l)(a/b) 2k - (I-2N2/_2) ]

_I=

Em[um+(l-um)k]

(l+vm)(l-2u m)

30-c)

_2 =

Em[vm-(l-vm)k]

(l+_m)(l-2u m)

30-d)

YmN2 I YLEm]
a 3 = -- l-2v m- (I- 2_LT )-

E m ELY m

30-e)

Then the stress components in the matrix become'

m Emcz-Ym

_r

l-2u m

+ _iC2r(k-l) + _2C3r-(k+l) 31-a)

m Em_z-Ym

a_

l-2u m

Em[(umk+I/2)C2r(k-l)-(umk-I/2)C3r-(k+l) ]

+

(l+um)(l-2_ m)

31-b)

m m

°z = °O + Ym 31-c)

Further increase of the axial strain, as mentioned in ref. [2], may cause

another type of plastically deformed matrix region in which the radial and cir-

cumferential stresses are identical. The present paper, however, does not con-

sider this case because the infinitesimal strain assumption may not be valid for

further increase of the applied axial strain.
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RESULTS AND DISCUSSION

The effective stress-strain curve for a composite cylinder can be predicted

by calculating the average value of the axial stress, az, as a function of the

applied axial strain, Cz, and the mechanical properties of the composite

constituents. As an example, the effective stress-strain curve of the composite

studied by Ebert, et al.[4] is demonstrated in Figure 3. The mechanical proper-

ties of the composite constituents appear in Table i. In Figure 3, the solid

lines represent the present analysis. Within the straight line segment(OA), both

the core fiber and the surrounding matrix tube are within their elastic limits.

When the applied axial strain reaches _zY, the entire core fiber yields. The

next line segment(AB) represents the hardening behavior of the composite with

plastically deformed core surrounded by an elastic tube. When the applied axial

strain reaches Ezl in the same figure, the surrounding matrix starts yielding

from the fiber-matrix interface. This strain can be calculated from eq. (29-a)

by setting c=a. Then the plastically deformed matrix region propagates outward

until the entire matrix tube yields. This smooth transient region is represented

by the line segment BC. The applied axial strain, _z2, where this transient

phenomenon terminates can be calculated from the same equation by setting c=b.

The composite response to further axial strain increase then follows the remain-

ing line segment. Within the transient region and for the higher value of the

applied axial strain, the matrix tube material is assumed to be nonhardening

even though the material hardens significantly(Figure 3 in ref. 4). The exper-

imental results of Ebert, et al.[4] are also plotted in the same figure.

Table i. Constituent Properties the Composite[4]

Ultimate 0.05_ Elastic Poissonfs

Materlal Strength Offset Yield Modulus ratio

(Ksi) (Ksi) (Msi)

SAE 4140 9B 54.9 28.7 0.29

(Core)

Maraging Steel 318 288 25.5 0.29

(Matrix Tube)

In Figure 4, the radial variations of the radial, circumferential and axial

stresses in the composite cylinder of which the core volume fraction is 0.5 are

plotted for two distinctive axial strain values, Ezl and _z2" The stresses in

the core material decrease slightly as the axial strain increases from _zl. At

the onset of the initiation of the matrix yield, the axial stress in the matrix

tube is cDnstant. As the applied axial strain increases beyond _zl, the axial

stress in the matrix has its maximum value at the free surface.

64



200000

m 150000
r_3

03

100000

ID
_0 50000

0 ,
0.000

fiber volume fraction = 0.5

//J"

J/ •

/ -- PRESENT sOLUTION
/ ---- NUMERICAL, REF. 4

..... EXPERImENTAl, REF. 4

, I , , , , i ,

0.005 '0.0'10 '0.015

Applied Axial Strain

200000-

_150000

.,¢.J
03

100000

I_ 50000"

0
0.000

fiber volume fraction = 0.455

/ -- PRESENT SOLUTION
/ --- NUMEPJCAL, REF. 4

..... EXPERIMENTAL REF 4

, , , , I ' ' ' ' I , ' ' '

0.005 0.010 0.015

Applied Axial Strain

Figure 3. Composite stress-strain curve
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CONCLUSIONS

The present study provides an analytical prediction of the elastoplastic

response of continuous fiber composites with weaker fibers. The incremental form

proposed by Ebert, et al.[4] must be replaced by the second order ordinary dif-

ferential equation given by eq. (26). Furthermore, the present analysis can

handle the mismatch of the Poisson_s ratios as well as transversely isotropic

fibers. The present analysis will be generalized for the same type of compos-

ites under cyclic loading for providing a comparison to the study of Mulhern, et

al.[2]
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Introduction

The phenomenon of peeling and debonding of thin layers is a subject of interest

to those concerned with adhesives, thin films, and layered materials. In recent years

much attention has been focused on such problems as a result of increased interest and

application of advanced composites and thin film coatings. (See for example ref. i.

An extensive list of references pertaining to the subject can be found therein.) A

related problem which is of interest for its own sake but also represents a simple

example of a tangled adhesive strip and of coplanar delamination interaction, is the

problem of a looped adhesive strip. This is the subject of the present study.

We consider here the problem of an elastic strip which possesses an adherend on

(at least) one of its surfaces. If the strip is deformed so that two portions of

such a surface are brought into contact, a portion of the strip becomes bonded and a

loop is formed (Figure I). We shall be interested in determining the equilibrium

configuration of such a strip and investigating the behavior of the strip when its

edges are pulled apart.

The problem shall be approached as a moving interior boundary problem in the

calculus of variations with the strip modeled as an inextensible elastica and the

bond strength characterized by its surface energy.* A Griffith type energy

criterion shall be employed for debonding, and solutions corresponding to the problem

of interest obtained. The solution obtained will be seen to predict the interesting

phenomenon of "bond point propagation", as well as the more standard peeling type

behavior. Numerical results demonstrating the phenomena of interest are presented as

well and will be seen to reveal both stable and unstable propagation of the boundaries

of the bonded portion of the strip, depending upon the loading conditions.

P

Figure i

*Bottega, W.J.: Peeling and Bond Point Propagation in a Self-Adhered Elastica.

To appear in Quart. J. Mech. and Appl. Math.
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Formulation of the Problem

Consider a thin elastic strip which possesses an adherend on one of its surfaces,

and let the strip be closed on itself in a symmetric manner such that there exists a

region in the plane of symmetry where the strip is bonded to itself (Figure I).

Additionally, let the edges of the strip be subjected to equal and opposite forces as

shown. As a result of the inherent symmetry of the problem, only half of the strip

need be considered in the ensuing analysis (Figure 2). The strip thus consists of a

lifted segment, a bonded segment, and a looped segment. In what follows, all length

scales have been normalized with respect to the half length, L, of the entire strip.

We shall identify each point on the centerline of the strip by its normalized arc

length, s, measured from the edge at which the external force is applied. In so doing,

the half strip will be divided into four regions; corresponding to the lifted segment

defined on 0 S s S a, a S s S b corresponding to the bonded segment , with the looped

segment of the strip divided into two regions, defined by b s s S s* preceding the

associated inflection point, s*, and s* s s S I following the inflection point. We

shall be interested in assessing the behavior of the above system as a function of the

magnitude of the applied load or the corresponding edge displacement.

Let us first define the right handed cartesian coordinate system (x,y) as shown

in the figure. In addition, let us define the angle 8(s) which measures the angle that

the tangent of the strip at point "s" makes with the x-axis as s increases (see Figure

2). One then may easily find the relations

and y(s 2) -y(s I) = fs_ z sin 8 ds (i-a,b)

P

r
s s*

s-a s-b

X

Figure 2
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Energy Functional

As we shall approach the problem as a moving interior boundary value problem in

the calculus of variations, we next define the energy functional _ given in Table i

where U (±) corresponds to the normalized strain energy of the segment of the strip

defined on the domain Di, and is seen to be comprised solely of bending energy as

the elastica is assumed to be inextensible. The strain energy of the (perfectly)

bonded segment of the strip, i.e., the portion of the strip on [a,b], is thus seen

to vanish identically. The functional W corresponds to the normalized work done by

the applied load. In that expression, P - PL2/D corresponds to the normalized

counterpart of the magnitude of the applied load, P, and D represents the bending

stiffness of the strip. The functional r corresponds to the "delamination energy"

where 7 - _L2/_ represents the normalized counterpart of the surface energy of the

bond, V, while a 0 and b 0 correspond to the initial values of a and b respectively.

Finally, we introduce the constraint functional A, with Lagrange multiplier A,

which constrains the deflections of the segments of the strip on D 3 and D 4 to be

continuous at s _ s*. The functions x3(s*) and x4(s*) may be expressed in terms of

0 by eq. (i-a). Thus,
s* i

A - A f b cos 0 ds + A f s* cos 0 ds (2e')

We note that the inclusion of A is equivalent to treating the segments on D 3 and D 4

as separate structures and including the work done by the internal force X, at s - s*.

It may be seen that the line of action of this force must be parallel to the x-axis

as a result of the support condition at s - I (see Figure 2).

Table I

4 u(i)I]=z -W+r-^ (1)
i=I

where:

u (i)= I 2ds
D.

l

(za)

u (2) _ o (2b)

a

W=-Px(o) = P J" cos0 ds
0

(2,:)

r = 2v(a-a o)- 2v(b-b o) (2d)

^ = xIx3 (s')- x4 (s*)] (2e)
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The Governing Equations

The governing differential equations, boundary conditions, matching conditions and

transversality conditions for the problem of interest are found by invoking the

principle of stationary potential energy as shown in Table 2 below. In equation (3),

the parameter 6 represents the variational operator.

The transversality conditions (7a,b,c) result from the moving boundaries during

peeling or bonding of the strip and thus are associated with equilibrium configurations

of the system during these processes.

The intermediate boundaries a, b and s*, as well as the inflection point angles

and _* are found as part of the solution to the problem.

Table 2

Principle of Stationary P.E.: nN = 0

(1) into (3):

12(dd-@)2+ Pi(c°s a.-l cos 0 i) = 0 , (i = 1,3,4)

(3)

(4)

o 2 = _/2

where: o 1 " ;(o)= e--_-8 , al=a_ , Pl= P ,

(5)

02,3, 4= o , _t3,4 = a*- o(s*) , P3,4 =

with B.C.s and M.C.s:

ol(a ) = o3(b ) = _r/2 , (6a,b)

and T.C.s:

1 d°l

s=a -
= 2v (7a)

e4(1) = 0 (6c)

o3(s* ) = o4(s* ) = a* (6d)

1 do_
G(b*) - _ d'-_s 2 I s=b += 2-_ (7b)

_b coso ds = -J" ,cos o ds (6e)
do3 do4
ds Is=s* =d--s- Is=s *= 0 (7c)
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Criteria for Propagation of the "Bond Zone" Boundaries

The conditions (7a) and (7b) establish the bond zone boundaries during their

propagation and state that the values of a and b corresponding to equilibrium config-

urations of the system during propagation of each interior boundary are those for

which the bending energy densities at the point s - a- and s _ b + are just balanced

by the energy of the bond. In this context the quantities G{a-) and GIb +} may be

identified as the "energy release rates" at the bond zone boundaries. The above

suggests the criteria for propagation of the boundaries of the bonded region of the

elastica, as listed in Tables 3a and 3b.

Peeling

If, for some initial a = ao, eqn. (8a) is satisfied, no peeling will occur and a

will remain at its initial value a o with the lifted segment bending away from the

plane of symmetry. If, for some initial a = ao, eqn. (Sb) is satisfied, the lifted

segment of the strip peels away from the plane of symmetry such that the value of a

increases until the corresponding equality (7a) is satisfied.

Following the above reasoning, we conclude that for the loop to maintain its

initial configuration, conditions must be such that eqn. (9a) is satisfied. If

eqn. (gb) holds, the loop would open as a result of excess bending energy at its

edge, with b taking on smaller values until the energy of deformation is just

balanced by the energy of the bond.

Peeling:

If G{a-o} < 2v

If G{a-o} > 2_t

Table 3a

Criteria for Propagation
of Bond Zone Boundaries:

No Peeling

Peeling until a
satisfies equality (7a)

(8a)

(8b)

Similarly,

If G{b°*} < 2_ Loop maintains initial
configuration

(9a)

If G{b° ÷} > 2-¢ Loop grows (b decreases
until b satisfies equality (7b) (9b)
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Bond Point Propagation

If conditions are such that the bending energy G{a-} is sufficiently large while

G{bo +} is sufficiently small, the bond zone boundary "a" will increase while b remains

at its initial value until a - b-. At this stage, as the resultant bending moment

mba acting at the bond point satisfies eqn (I0) (Table-3b), and hence acts in a

clockwise sense, tending to rotate the strip in this sense, while simultaneously

there exists a sufficient surplus of bond energy to counter the bending energy of the

loop and induce bonding at the loop edge, the strip behaves locally as if rolling

over its counterpart and the "bond point" s = a _ b will propagate such that the loop

closes and shrinks until the corresponding equality (7b) is satisfied. At this point

the surplus bond energy is depleted and bonding at s = b + can no longer occur.

Equivalently, the growth condition (9b) as well as (8b) will become satisfied and

conditions will then be such that propagation can occur in both directions simul-

taneously. Under such conditions, the loop will expire and the strip will separate

completely.

Table 3b

"BOND POINT PROPAGATION":

If (9a) and (8b) satisfied, a -_ bo.

Resultant Bending Moment:

mba [[d0/dS]]s=b = [d0/dS]s=b. [de/dS]s=b_ < 0

(thus, mbaiS clockwise)

0o)

Thus, "bond point" propagates until equality (7b) satisfied

and loop expires.
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Basic Integrals

The nonlinear differential equations (4) governing the local rotations on each

segment of the strip are seen to be of standard form, which upon solving for ds,

integrating over the corresponding domain, and using the transformation given by (II),

results in expressions for the segment arc lengths _i (i-1,3,4) in terms of the

inflection point angles and corresponding external or internal loads as given in

Table 4. We note that these lengths will vary as a result of bonding and debonding.

The functionals F(q,_) and Fk(q) in eqns. (12) correspond to elliptic integrals of

the first kind and complete elliptic integrals of the first kind, respectively.

defined by

@ d_ i

F(qi,@ ) m f o and Fk(qi) _ F(qi,_/2) (ii-a,b)
2

Jl-q i sin2¢i

We shall first consider equilibrium configurations of the lifted segment

(SEDI) and of the looped segment (0ED3+D_) separately, and then examine their
interaction.

Table 4

BASIC INTEGRALS

Transformation:

sin(0 i/2) = qi sin _i (lla)

qi = sin (ai/2) (i = 1,3,4) (11b)

(11) into (4), solving for ds and integrating

segment arc lengths t i :

A

t i= a = [Fk(ql) - F(qI,.I)//P- (12a)

t3: s* - b = [Fk(q*) -F(q*,.3)]/_ (12b)

t 4 = l-s* = Fk(q*)/f_ (12c)

where q3 = q4 = q* (13a)

^ -1 _)} (13b)'i = sin {1/(q

F(q, 0 - Elliptic Integral of 1st Kind

Fk(qi ) - Complete E.I. of 1st Kind
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Behavior of the Lifted Region

The deflection of the edge of the strip at which the load is applied is found

by solving equation (4a) for d01/ds and substituting the resulting expression into

equation (i-a), with appropriate limits of integration. Then, upon incorporating
the transformation (13), we obtain the load edge deflection, A o, as given in Table 5,

where

2
E(qi'_) = _o Jl'qi sin24i d_i and Ek(qi) E E(qi,_/2 ) , (iii-a,b)

correspond to elliptic integrals of the second kind, and complete elliptic integrals

of the second kind, respectively. The explicit form of the transversality condition

at the "trailing edge" of the bonded region (i.e., at s = a) may be found by solving

equation (4a) for [dgl/ds]s= a and substituting the resulting expression into (7a).

We then have the condition which (implicitly) defines the location of the trailing

edge of the "bond zone", during peeling, given by eqn. (15).

Substitution of equation (15) into equation (12), with i = i, and equation (14)

gives explicit relations for the magnitude of the applied load as a function of "a"

and the normalized load point deflection as a function of "a" respectively, with the

load point rotation a a parameter. Specific results corresponding to selected values

of 7 will be presented in a later section.

Table 5

BEHAVIOR OF LIFTED REGION

LOAD POINT DEFLECTION:

A A

= -xl 1 {[2E(q 1,11) - F(ql,, 1)1&O S=O -
,/P

- [2Ek(ql ) - Fk (ql)l} (14)

where E(q,e) - Elliptical Integral of 2rid Kind

Ek( q i) - Complete E.I. of 2nd Kind

T.C. @ s = a- (7a) becomes

P = -2v/cos 7, (_/2 < & -_ ,) (15)
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Equilibrium Configurations of the Loop

The angle which measures the rotation of the tangent of the loop at its

inflection point s - s* is found hy imposing the condition (6e). Thus, solving

equations (4b) and (4c) for dg/ds, substituting the resulting expressions into the

left and right hand sides of (6e) respectively, noting (6d) and incorporating the

transformation (ii) for i - 3,4 we obtain the condition given by (16) below where

as defined earlier, _* - a 3 - _4 and q* - qa - q_. It may be seen from equation

(16) that _* is independent of the size of the loop, of the material and geometric

properties of the strip and bond, and of the magnitude of the applied load, and

thus is a "characteristic angle" of the problem. Equation (16) may be solved

numerically to yield the value of _* as given below.

The total (half) arc length of the loop, _, is simply comprised of the sum

of the lengths Of its constituent segments. Thus, adding equations (12b) and

(12c) yields the relation for _, given by (18). The relative portions of the loop

corresponding to its constituent segments are then found by dividing eqns.(12b)

and (12c) by (18). We thus have

and

_3/_ - [Fk(q* ) - F(q*,_*)]/[2Fk(q* ) F(q*,_*)]

_4/_ - Fk(q*)/[2Fk(q* ) - F(q*,_*)] ,

(19a')

(19b')

which are seen to correspond to "characteristic length ratios" of the problem. The

above ratios may be evaluated, using the computed value of _*, to yield the values

given at the bottom of Table 6.

Table 6

EOUILIBRIUM CONFIGURATIONS OF THE LOOP

Imposing (6e):

2[2Ek(q* ) - Fk(q*)] = 2E(q', _,')- F(q', ,') (16)

A A

(where,* = m3 = o4).

Solving (16) yields "characteristic angle" of inflection point

c,* = 117.54" (for any loop size and

mat'l./geom, props.) (17)

(12b) + (12c) * loop (hal o arc length _:

= t3 + _4 = [2Fk(q')- V(q', e*)l/./f" (18)

(12b,c)/(18) = "Characteristic Arc Length Ratios":

t3/_ = 0.3254 and _4/t = 0.6746 (19a,b)

(for any loop size and mat'l./geom, props.)
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Debonding of the Looped Segment

We may next consider equilibrium configurations of the looped segment of the strip

as it opens (debonds) by evaluating the explicit form of the transversality condition

at s = b ÷ in a manner analogous to that done earlier for the lifted segment. Doing so

we find that during opening of the loop, the condition (7b) takes the form given by

eq'n.(20) where _* is given by (17). Since, as discussed earlier, _* is a "character-

istic angle" (i.e., it maintains a fixed value for any equilibrium configuration of the

loop,) it is seen from the above expression that the internal force _ maintains a

constant value during debonding of the loop.

Substitution of (20) into equation (18) yields a critical value of the loop length

given by equation (21) below, with the inequalities (9a,b) now interpreted in terms of

the arc length of the loop; e.g. (22a,b).

It may be noted that a minimum value of the normalized bond energy is required for

the elastica to remain adhered to itself. This value 7 = 7mln corresponds to the

limiting case where the loop traverses the entire strip and is in self-contact only at

the loading edge s = 0 (i.e., it corresponds to the limiting case when 2cr - i). Upon

employing the result (19) we find the desired value given below. Adherends whose

normalized bond energies possess magnitudes which are below this value are thus not

"strong enough" to maintain a self-adhered configuration.

Table 7

T.C. @ s = b + (7b) becomes:

= -2-dcos a* (= constant for given _) (20)

(20) into (18):

t = [2Fl_q" ) - F(q*, t*)],/(-cos,,')/2_ (21)

If l > t No debonding of loop occurs (22a)
cr

If_ <t
cr

Debonding of loop occurs

l increases (b decreases) until t = t
cr

(22b)

= 1= -_ = 2.292_cr = _ min (23)
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Effective Bond Strength and Propagation Behavior

A plot of 2or versus 7 is displayed in Figure 3. It may be observed from the

figure that the amount of "effective bond strength" gained, as measured by the relative

decrease in _cr, significantly decreases as 7 is increased beyond 200.

Peeling and Bond Point Propagation

The above solution offers the following scenario for a looped adhesive strip with

given 7 > 7mlu existing in an initial configuration such that _o = l'bo > 2or (or

equivalently b o <b¢r - 1-2¢r), with an initial lift zone size of _i - ao. As P is

increased the corresponding value of _I = _ is increased according to equation (12a),

with the associated deflection 4 o varied according to equation (14). This process is

continued until equation (15) is satisfied at which point peeling begins with the

"trailing edge" of the "bond zone" s = a propagating (and 11 increasing). As the

initial loop length 2o is larger than the critical length, the loop edge boundary of

the bond zone remains at its initial value until a = b o. At this point if conditions

are such (equation (15) satisfied) that peeling continues, the bond point a = b

propagates with _ decreasing (b increasing). During this phase the values of _*,

_a/_, and _4/_ maintain the values given by (17) and (19a,b) respectively. The loop

thus shrinks in size during this phase, with its geometry evolving through successive

self-similar shapes (as if the strip were being pulled through a rigid clamp at s - b).

This process continues until 2 - 2or, at which point conditions are such that peeling

may occur at both s = b- and s = b + (i.e., in both directions) simultaneously. At

this instant the loop is terminated and the surfaces on each side of the plane of

symmetry separate. Results corresponding to specific values of 7 are presented

next.
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Numerical Results

Results are presented corresponding to selected values of the normalized bond

energy. Specifically, we consider the strip/adherend systems whose material and

geometric properties are characterized by the values 7 = 5, i0, 50, I00, and I000

respectively.

The projections of the associated lift zone/bond point "propagation paths"

in the Ao-a , P-a and P'Ao spaces are calculated and are displayed in Figures 4-7.

Each curve is terminated at the critical values a = b=r _ l-2cr , which are given

by the values bcr = .3230, .5213, .7859, .8486, and .9522 for the respective values

of ? considered. The prepropagation load-deflection behavior of lift zone segments

corresponding to initial lengths of ao = 0.25 and ao - 0.50 are also displayed in

Figure 6. Finally, the variation of the magnitude of the internal force X, as a

function of the loop length 2, is displayed in Figure 8.

It may be seen from the figures that propagation of the lift zone boundary or

bond point occurs in a stable manner for a deflection controlled test, and in an

unstable and "catastrophic" manner for a force controlled test. The following example

illustrates the general behavior of the self-adhered elastica.

1.0-

Fig. 4.
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Let us consider a strip/adherend combination with 7 - 50 which is initially

configured such that a o - 0.25 and b o - 0.60. It may be observed that a system

characterized by one of the smaller values of 7 considered could not maintain a loop

size this small (b o this large) and that for such a system the loop edge boundary, b,

would immediately decrease to its corresponding critical value. Returning to the

previously defined case (7 - 50), the system initially follows the prepropagation

path for ao - 0.25 in Figure 6, as P and A o increase from the origin. During this

phase, the system simultaneously follows a purely vertical path, corresponding to

a = 0.25, in the Ao-a and P-a spaces (Figures 4 and 5). The system continues to behave

in this fashion until the propagation path corresponding to 7 = 50 is intercepted.

At this point the lifted segment of the strip has accumulated enough bending energy at

the bond zone boundary s = a-, for the lift zone to propagate. We note that as

_o > _== (bo < bcr) the bending energy of the looped segment at s = b + is insufficient

for propagation so b remains at its initial value. Let us first consider the case

where the load edge deflection, Ao, is controlled. For this case, as A o is

incrementally increased, a increases incrementally following the corresponding path

in Figure 4. The corresponding values of P may be observed, from Figs. 5 and 6, to

decrease accordingly. This process continues, with the strip peeling from its

symmetric counterpart in a stable manner, until a = b o. At this point the bending

energy of the loop at s - b + is still sufficiently low as to maintain the bond,

while that at s - b- is large enough to permit debonding. As A o is increased

further, the bond point s = a = b then propagates in a stable manner, with the loop

shrinking through a series of self-similar shapes until _ = 2¢r , at which point

sufficient bending energy exists on both sides of the bond point and the strip

separates. For the case where P rather than A o is controlled, the system behaves
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in an analogous manner except that all behavior during the propagation phases occur in

an unstable manner. Thus, for this case the process of complete separation of the

elastica is initiated as soon as P reaches a critical value.

The phenomena described above may be observed by simply closing a piece of

adhesive tape on itself, thus forming a loop, and then peeling the edges apart. Such

an "experiment" would correspond to a deflection controlled test, with the normalized

bond energy characterizing the tape observed to be at the upper end of the range

of values considered in the numerical simulations presented herein.

Fig. 6.

400

3O0

f_ 200

tOO

_0 = O. 25 a 0 = 0.50

-- 7 = I00

- 7 = 50

...... 7 = 10

..... 7 = 5

Prepropagation and Lift Zone/Bond Point Propagation Paths (V = 5, I0,

50, i00): Applied Load vs. Load Edge Deflection

CF •....

81



Jooo

e_. _ooo '\

o ......
oo o z o._ _o 6 " " 0'8 " i I U

rooo

o+ ° ................
o" o¢ oa oo " i _;

A_

Fig. 7. Lift-Zone/Bond Pt. Propagation Paths (? _ i000): (a) Applied Load vs. Bond

Zone Boundary, (b) Applied Load vs. Load Edge Deflection

82

Fig. 8.

o t_ ...... r ....... , ,
o z o 4 o,_ o _ s _J

l

Internal Force at Inflection Point of Loop as a Function of

Loop (Half) Length

h _i'__-!ii', ._..



Acknowledgments

The author wishes to thank Mr. D.C. Newman of Carnegie Mellon University for

performing the numerical calculations, simulations and associated graphics using

the MATHLIB Software by Innosoft. Additionally, the author wishes to thank Ms. M.

Bellinger of Rutgers University for performing the non-computational graphics.

Finally, he would like to thank Ms. Bellinger for bringing her acute observations to

his attention, thus motivating this study.

References

I. Bottega, W.J.: Peeling of a Cylindrical Layer. Int. J. Fracture, Vol. 38, No. i,

1988, pp. 3-14.

83





N91-10307

A NEW BEAM THEORY

USING

FIRST-ORDER WARPING FUNCTIONS

C.A. IE and J.B. KOSMATKA

DEPARTMENT OF APPLIED MECHANICS AND ENGINEERING SCIENCE

UNIVERSITY OF CALIFORNIA, SAN DIEGO

LA JOLLA, CA 92093

_":::_:- _.'.i_f:_i,IIOT FILMED

85



BASIC IDEA

Due to a certain type of loading and geometrical boundary conditions, each beam will
respond differently depending on its geometrical form of the cross section and its
material definition. As an example, consider an isotropic rectangular beam under pure
bending. Plane sections perpendicular to the longitudinal axis of the beam will remain
plane and perpendicular to the deformed axis after deformation. However, due to the
Poisson effect, particles in the planes will move relative to each other resulting in a form of
anficlastic deformation. In other words, even in pure bending of an isotropic beam, each
cross section will deform in the plane.

If the material of the beam above is replaced by a generally anisotropic material, then the
cross sections will not only deform in the plane, but also out of plane. Hence, in general,
both in-plane deformations and out-of-plane warping will exist and depend on the
geometrical form and material definition of the cross sections and also on the loadings.

For the purpose of explanation, an analogy is made. The geometrical forms of the bodies
of each individuals are unique. Hence, different sizes of clothes are needed. Finding the
sizes of clothes for individuals is like determining the warping functions in beams.

A new beam theory using first-order warping functions is introduced. Numerical
examples will be presented for an isotropic beam with rectangular cross section. The
theory can be extended for composite beams. (Fig. 1.)

Figure 1. Analogy between determining the (first-order) warping functions
and the proper size of clothes for individuals.
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CANTILEVER BEAM

Consider the case of an isotropic rectangular cantilever beam with a tip loading ( P ). For
the purpose of comparison to the St. Venant elasticity solution, St. Venant boundary
stresses shall be taken into account. These self-equilibrated boundary stresses are shown in
the figure below. XYZ is the system coordinate ; L is the length ; H is the height, and B is
the thickness of the beam. Comparison will be made with respect to the plane stress St.
Venant elasticity solution. Hence, the comparison will be more valid as the thickness goes
to zero. (Fig. 2.)

L

H
Y

X

Figure 2. Cantilever beam with its boundary conditions.
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ASSUMED DISPLACEMENT FIELD

The u,v,w ,are displacement components parallel to the x,y,z coordinate axis(refer to figure
2.)..u0 is the transverse displacement of the axis of the beam parallel to the x coordinate
axis. _ is the bending rotation of the beam axis and its positive sense is defined as in the
direction of the positive y axis. M and Q are the bending moment and shear force,
respectively, q is the distributed load. U and V are the in-plane deformation functions
parallel to the x and y coordinate axis, respectively. W is the out-of-plane warping function
parallel to z coordinate axis. E is the Young modulus, and I is the moment of inertia of the
cross section.

Strains are computed from the first set of equations. From Hooke's law [ to) = [c] (t) ],
stresses can be calculated. Using the definition of moment, M can be solved in terms of E,
I and _. The final form of the displacement field is as shown in the second set of equations.
The detail is as follows.

By definition of moment,
/,

M(z) = l X oz dA
dA

Assuming that (in consistency with using only the In'st-order warping functions)

_(z) =- q(z) = 0, the moment will be expressible as being M(z) = - E I _(z). By equilibrium

Q(z) = _(z) =- E Z ¢(z). Substituting M and Q into the first set of equations, the final form of

the displacement field is obtained.
It is important to note that no assumption is being made except the assumed displacement

field itself. (Fig. 3.)

u(x,y,z) = Uo(Z) + M(z) U(x,y)

w(x,y,z) = - x cp(z) + Q(z) W(x,y)

where

1)

U(x,y)- 2EI(X2-y2)

-- -- 2+-0 x3
W(x,y)--W(x)- 6EI

Final Model

u(x,y,z) = Uo(Z) + 9'(z) U(x,y)

w(x,y,z) = - x q_(z) + qr(z) W(x)
where now

1)

U(x,y) = _- (x/- y2)

2+_
W(x) - x3

6

v(x,y,z) = M(z) V(x,y)

-- "0
V(x,y) - x y

E I

v(x,y,z) = _p'(z) V(x,y)

V(x,y) = 'o x y

Figure 3. Proposed model in a case of rectangular cross section.
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LAYOUT OF THE NODAL POINTS

The finite-element model is developed using a layout of the nodal points as shown below.
The layout is chosen such that all terms in the strain energy expression are taken into
account. The minimum order of polynomials that is required for • based upon the strain
energy expression is three. Hence a four-node layout is required for ¢. A five-node layout
is selected for u0 because, from the physical point of view, u0 is one order higher. Other
polynomials could also be selected (Fig. 4.)

-1 0 1

I I I

I I I

I I I

I I I

I I I

I I I
I

t U0
Displacement in the X-direction

tp Bending rotation

Figure 4. Layout of the nodal points in the finite-element model.
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FINITE-ELEMENT MODEL

Using the principle of stationary potential energy a finite-element model is obtained. The

term {SM} in the equation is due to the fact that, instead of applied concentrated resultant
forces, 'applied' St. Venant distributed stresses (through the cross section) are to be
considered. If applied concentrated resultant forces do exist in the reality, then this term

will vanish. The term {_m} is present due to the fact that the distributed forces are applied
on the upper surface of the beam. These additional terms exist because a beam theory that
accounts for in-plane deformations and out-of-plane warping is used. Had an Euler-
Bernoulli beam theory been used (or likewise Timoshenko beam theory), all these terms
will vanish no matter how the loads are applied. All other terms are the usual terms that
result when developing a finite-element model based upon an Euler- Bernoulli theory. For
example

{f} =Iq[N] T dz

where q is the distributed load and [ N ] are the shape functions. (Fig. 5.)

Uo(Z)=  Uoj  j(z)
j=l

Uoj, Cpj

4

¢(z) = Oj(z)
j=l

are Lagrangian type shape functions.

Equilibrium equations

[K12] 5x4

[K2214x 4

{Uo}5 x 1

{(P}4x !

{0}sxl
+ +

{M}4xl

Figure 5. Finite-element model.
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TIP DISPLACEMENT OF A CANTILEVER BEAM

A semi-logarithmic plot of aspect ratio versus nondimensionalized tip displacement is
shown below where the tip displacement is nondimensionalized by dividing by the Euler-
Bernoulli solution for a given load and geometry. Aspect ratio is defined as the length
divided by the height of the beam. The Poisson ratio is taken equal to 0.25. All theories are in
agreement for slender beams. For this type of loading, the elasticity solution, the proposed
theory, and the Timoshenko using k equal to 2/3 are in perfect agreement. Using a k factor
equal to 0.8475 [ 1 ] in the Timoshenko theory results in a stiffer beam (compare to using
k equal to 2/3).

Solutions were calculated for extremely long slender beams ( L/H = 100 ) to insure that
the current beam element converged to the Euler-BernouUi solution and did not "shear-
lock". All calculations were performed assuming that B/L is equal to 1/8000. This
selection was made to insure that the current model can be directly compared to the plane

stress elasticity solutions. (Fig. 6.)

2.0

L5
0

_ 1.0

+ Elasticity

_ ....... o .... Proposed Theory & Timoshenko, k=2/3

\_ -- o- - Timoshenko, k=0.g475

L ----m--- Eulex-Bemoulli

A A
v v _

0.5

P

1 lO lOO

Aspect Ratio I L/It I

Figure 6. Tip displacements of a tip-loaded cantilever beam.
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NORMAL STRESSES AT THE ROOT OF A CANTILEVER BEAM

Consideracaseof thecantileverbeamwith anaspectratioequalto three. Theabscissais
thenondimensionalizednormalstresseswith respectto theEuler-Bernoullinormalstressat
thetopof thesurface,i.e., _. Theordinateis thenondimensionalizedX-coordinatewhere
thetop andbottomsurfacesof thebeamaredefinedas-1 and1,respectively.As canbe
seen,all theoriesarein perfectagreement.(Fig.7.)

X

- 1.0

-0.5'

0.0'

0.5

1.0

D

+ Elasticity

---_ .... Proposed Theory

- - o- - Timoshenko, (k independent)

Euler-Bernoulli

0

[ Oz/( Oz)Eu   -B mo0Hi]

Figure 7. Normal stress at the root of a tip-loaded cantilever beam.
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TRANSVERSE SHEAR STRESSES
AT THE ROOT OF A CANTILEVER BEAM

Nondimensionalizedshearstresseswith respectto the elasticity shear stress at x equal to
zero are made, i.e., nondimensionalized with respect to x_. The ordinate is the
nondimensionalized X-coordinate. The results from the proposed theory are in perfect
agreement with the elasticity solutions. If the Timoshenko theory is applied, constant shear
stress distribution is obtained. In fact, their values are equal to the average shear stress, i.e.,
P/A where A is the area of the cross section and P is the applied concentrated load. In this
case, they do not depend on the value of the shear correction factor (k). Hence, the shear
correction factor will influence the stiffness and shear strains of the beam, but not the shear

stresses. Since the shear stresses are independent of k, then the shear strains must vary
proportionally to the inverse of k. For an Euler-Bernoulli beam, a contradiction exists. If
shear stresses are computed from the shear strains, then their values will vanish. On the
other hand, from the equilibrium point of view, shear stresses cannot be zero. Using the
principle of equilibrium, shear stresses can be obtained. (Fig. 8.)

Figure 8. Transverse shear stresses at the root of a cantilever beam.
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TABLE OF COMPARISON FOR THE STRESS COMPONENTS

OF A CANTILEVER BEAM

Results from the theory of elasticity for the stresses are available. Due to the computational

round-off errors, the coefficients Ei will exist in the proposed theory. These terms become
smaller as the value of B (the thickness) goes to zero. If truncation errors could be

eliminated, the ei terms will go to zero as B goes to zero. This is due to the fact that the
out-of-plane warping function W(x,y) was taken from the plane stress solution, which is
then only a function of x, i.e.,W = W(x). This is done mainly for the purpose of
comparison and simplicity. In order for the current comparison to be valid, the thickness
of the beam should be taken very small ( B --> 0 ). As one can see, apart from the round-
off errors, the proposed theory is in perfect agreement with the elasticity solution for the
whole body (plane). (Fig. 9.)

Gz = El X Z2 + C_I X Z + F--,2X3 + F-,3 X

"l;zx = E4 Z3 + E5 Z2 +E6 X2 Z + E7 Z + _C_2X2 + __C3

(Ix = Gy = E8 X3 '_yz = q;xy -- O

Proposed Theory Timoshenko Euler-Bernoulli

Elasticity Elasticity Elasticity

c_ i.oo _.oo _.oo
....................................................................................................

C2 1.00 0.00 0.00

C3 i .00 0.67 0.00

Ei --) 0 as B (the thickness) goes to 0

Figure 9. Comparison of the stress components relative to

the elasticity solutions.

94



SIMPLY SUPPORTED BEAM

Since the model is developed for tip loadings, it may have slight deficiencies for
analyzing beams with higher-order distributed loads. In this example, the effects of the
higher-order warping functions will be shown. Although it is possible to extend the model
incorporating some degree of higher-order warping functions, for beam-type structures
it may not be necessary. Higher-order warping functions play an important role for beams
with small aspect ratios (closer to solid structures). But, as the aspect ratio gets smaller,
the St. Venant solution becomes trivial in the practical sense (in reality). Another way of
defining beams is as follows. A structure (structural element) can be considered as being a
beam if the higher-order warping functions play insignificant roles. (Fig. 10.)
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Figure 10. Simply supported beam with its boundary conditions.
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MID-LENGTH DISPLACEMENT OF A SIMPLY SUPPORTED BEAM

It is very interestingto notethat,althoughtheTimoshenkotheoryfor k equalto 2/3 gives
theexactresults(for thedisplacements)in thecaseof acantileverbeam,it givesthemost
flexible structurein thecaseof simply supportedbeamswith constantdistributedload. The
proposedtheorystill givesveryaccurateresultsfor thedisplacements.As canbeseen,the
effectof higher-orderwarpingfunctionsin thedisplacements,in this typicalcase,is very
insignificant. (Fig. 11.) Theeffectsin thestressescanbeseenin thenext figure.
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Figure 11. Displacements at mid-length of a simply supported beam.
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NORMAL STRESSES AT MID-LENGTH OF

A SIMPLY SUPPORTED BEAM

Consider the case of a simply supported beam with a uniformly distributed load where
the aspect ratio (L/B) is equal to three. Nondimensionalized normal stresses are with
respect to the Euler-Bemoulli stress on the bottom surface of the beam. It is important to
note that the elasticity solution results in a cubic normal stress distribution as opposed to linear
as suggested by the Euler-Bernoulli or Timoshenko beam theories. (Fig. 12.) In the next

figure, a closer look at the lower portion of the cross section is presented.

q

Timoshenko (k independent) & Euler-Bernouili

0.0 1.1

1.0

[ O z/( Oz )Euler-Bernoulli ]

Figure 12. Normal stresses at mid-length of a simply supported bean.
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NORMAL STRESSES AT MID-LENGTH FOR
THE LOWER PORTION OF THE CROSS SECTION

As canbeseen,theelasticitysolutiongiveshighernormalstressesat thetopandbottom
of thebeamcomparedto the Euler-Bemoulli or Timoshenko beam. For this typical
numerical example (with an aspect ratio equal to three), the elasticity normal stress at the
bottom (or the top) is 3 percent higher, and the proposed theory gives 2.7 percent higher.
This effect is due to the presence of distributed load or, in other words, due to the presence
of higher-order warping functions. As the aspect ratio gets smaller, its effect will be more
significant. (Fig. 13.)

;>4

0.50

0.75

+ Elasticity

.... o.-- Proposed Theory

- - •- - Timoshenko, any k & Euler-Bernoulli

[ l

l

Figure 13. Detail of figure 12 for lower portion of the cross section.
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TRANSVERSE SHEAR STRESSES AT LEPT-END
OF A SIMPLY SUPPORTED BEAM

The same nondimensionalization as is found in figure 8 is made. The proposed theory
results in perfect agreement with the elasticity solution. Again, the Timonshenko beam gives
a constant shear stress distribution which is equal to R/A where R is the reaction force at the
left end. (Fig. 14.)
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Elaslicit
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[ 1;z,/( 1;'-zx)Elasticity ]

Figure 14. Shear stresses at the left-end of a simply supported beam.
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TABLE OF COMPARISONS FOR THE STRESS COMPONENTS
OF A SIMPLY SUPPORTED BEAM

All underlined terms exist in the plane stress elasticity solution. The terms with the

coefficients hi and h2 are the nonclassical terms and become important only for beams with
very small aspect ratios. As a matter of fact, these two terms, found in the expression of Cz,
are self-equilibrated in the section planes. Obviously both the Timoshenko and Euler-

Bernoulli beam theories cannot capture these higher-order terms. The proposed theory is still
able to capture these two terms. Although it is not accurate inside the body of the beam, it
gives an accurate result at the top and bottom of the beam, which are, in fact, the most
important points (for normal stresses) for practical purposes.

Due to the presence of the distributed load, the stress component Cx will not vanish. The

proposed theory gives a meaningless result in the sense that it does not satisfy the boundary
conditions at the top and bottom of the beam. This is not surprising because the theory accounts
for only first-order warping functions. Although it is possible to extend the theory
incorporating higher-order warping functions, it may not be necessary for practical
purposes. It is important to note that for this typical beam structure, the most important stress
components are _z and Xzx. (Fig. 15.)

oz = cl x z2 + c_2x zz+ h lA3 + h_x

"tzx =151 z3+E2z2+c__x2z+c_4z+csx2+c6

(Ix = c7x3 + c8x + C_9 (_y = d I x3 Tyz = Zxy = 0

In the proposed theory, o_ = Oy = dl x3 ; dl _ Jo_.

Figure 15. Comparison of the stress compoments relative to the

elasticity solutions of a simply supported beam.
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FUTURE STUDIES

Futurestudieswill includevibrationanalysis,methodsto determinethewarpingfunctions
for atypical beamcrosssection,geometricalnonlinearity,andanextensionfor composite
beams.Basicallytheproposedtheorywill beextendedfor generalcrosssectionsand
materialdefinition (compositebeams)suchthattheycanbeappliedfor anyspecialcase.
(Fig. 16.)

FUTURE STUDIES :

ooo> VIBRATION ANALYSIS

o-_> METHOD TO DETERMINE WARPING FUNCTIONS

_o_> GEOMETRIC NONLINEARITY

ooo> COMPOSITE BEAMS

Figure 16. Future studies.
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STRUCTURAL MODELS FOR SYSTEM RELIABILITY EVALUATION

Evaluation of structural system reliability is based on the determination of

probabilistic response of structures. The study of probabilistic behavior of

structural systems requires an underlying structural analysis model. The current

system reliability analysis procedures utilize the structural analysis methods

basically developed with a deterministic point of view. The applicability of these

methods when dealing with a random situation needs examination. It may be that

methods of structural analysis that are quite suitable for deterministic analysis

are not as suitable for probabilistic analysis and vice versa. Development of

structural system models especially suited for random state variables may be more

efficient and likely to lead to important insights into random structural behavior.

A recent National Science Foundation Workshop on Structural System Reliability held

at the University of Colorado, Boulder [I] also emphasized the need for the

development of structural analysis models from the probabilistic viewpoint.

The objective of this paper is to demonstrate discrete extremum methods of

structural analysis as a tool for structural system reliability evaluation.

Specifically, linear and multiobjective linear programming models for analysis of

rigid plastic frames under proportional and multiparametric loadings, respectively,

are considered. Kinematic and static approaches for analysis form a primal-dual

pair in each of these models and have a polyhedral format. Duality relations link

extreme points and hyperplanes of these polyhedra and lead naturally to dual

methods for system reliability evaluation.

DIRECT METHOD

Formulation of the global limit state surface

Computation of probability of random variables
having an outcome in the safe set

INDIRECT METHOD

Identification of all failure modes

Computation of the probability of failure of
individual modes

Evaluation of system reliability from modal
probabilities
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LIMITATIONS OF CURRENT APPROACHES

It is known that the structural problems can be analyzed by idealizing these

mathematically as either continuous or discrete models, leading respectively to the

solution of differential or algebraic equations/inequalities. The underlying

solution principles can be based on the solution of simultaneous equations or the

use of extremum principles. In the sixties, Schmit and coworkers [2] briefly

explored extremum methods for the deterministic structural analysis problems but

found them to be not competitive with solution methods for simultaneous equations.

However, in the use of simultaneous equations procedure for probabilistic

structural analysis, one has to solve the structural analysis problem repeatedly

for different realizations of random variables and this is computionally costly.

Use of extremum principles, on the other hand, elucidates the mathematical

structure of the problem corresponding to various random realizations of state

variables. This structure is extremely coherent with a definite pattern about the

solutions of the problem. An understanding of such patterns leads one to gain

important insights into response under random variables without analyzing the

structure for all such combinations. This coupled with use of recent computational

advances in algorithms [3] and vector processing of information on supercomputers

are likely to make these methods extremely attractive for use in probabilistic

analysis. For example, recent research [4] shows extremum methods to be ideally

suited for structural analysis required in the system reliability assessment of

structures with rigid plastic material behavior.

STRUCTURAL ANALYSIS FOR RELIABILITY EVALUATION

Discrete/Continuous models

Classical methods, elastic/plastic

Extremum methods

RESPONSE PATTERNS

- Polyhedral response regions

- Other response regions

• ADVANTAGES OF EXTREMUM METHODS
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EXTREMUM METHODS FOR STRUCTURAL ANALYSIS

Structural analysis requires both the calculation of the distribution of forces

throughout the structure and the displaced state of the system under the action of

applied loads. One of the fundamental features of structural analysis is the

possibility of using either forces or displacements as basic variables, with the

respective approaches referred to as static and kinematic methods. The algebraic

relationship of the static and kinematic approaches are the mathematical transpose

of each other, a feature known as the static-kinematic duality. If the structure

is statically determinate, the number of equations is same as the number of

variables, and the forces and displacements can be found easily from the solution

of system of algebraic equations. For statically indeterminate structures,

additional conditions reflecting the material constitutive relations must be

introduced.

As an example, for redundant frame structures, partial satisfaction of structural

constraints generates a subspace in R n containing the solutions of interest and the

final solution can be reached by some optimality criterion. The optimal solution

gives the result corresponding to the solution by traditional methods. The power

of the extremum methods, however, is that all the suboptimal solutions may also be

obtained from the model, and these suboptimal solutions correspond to various

random realizations of the variables. This set of available solutions has a rich

underlying mathematical structure and such patterns have recently been studied for

rigid plastic frames under proportional and multiparametric loading [4].
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RIGID PLASTIC FRAMES WITH PROPORTIONAL LOADING

The problem of limit analysis of frames in which the plastic behavior is activated

by a single stress resultant (such as flexure) may be formulated in terms of a

Linear Programming (LP) model [5]. Plastic hinges are assumed to form at a set of

discrete locations (j = i, 2 ..... J) and the plastic moment capacity at the jth

section is denoted by Mpj. Models formulated from dual structural consideration of

static and kinematic principles have been shown to be a primal-dual pair in the LP

format. The variables are Mj = moment at section j, Mj = Mj + - Mj - where Mj +

and M_ - represent the positive and negative values of moments; 0_ = rotation at
•J ........ th

sectzon j; t k = a coefficient Indzcatzng the contributlon of the _ elementary

mode to collapse, t k = t k + - tk - and k+, k= collapse load factors for the

kinematic and static LP's respectively. The parameters are 0k]- = hinge rotation of

elementary mechanism k at joint j, ek = external work associated with elementary

mechanism k, M = number of equations of equilibrium and Mpj = member capacity at
section j.

KINEMATIC LP STATIC LP

;k= Min oi,1"=Mpj
_,= Max _"

s.t. 0.+- O_ =
i J

M

t Ok
k=l k j

j=l, ., J

J

s.t. N 0k j M. = ;k" e
j=l l

k=l, ", M

k

M

k£1= tkek

Oj+,Oi- _> o

= 1
-M

+

<Mj <+Mp.
Pj j

j=l, ., J
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DUALITY RELATIONS

A study of the geometric structure of the primal and dual models shows the

constraint regions for both to be polyhedral. The failure modes of the frame are

given by the extreme points of the kinematic constraint region and the facets of

the static constraint region. Duality transformations of LP actually map extreme

points of one model to the hyperplanes of the other and vice versa. More

generally, l-dimensional subspaces of the model in Rn are linked to (n-l)

dimensional subspaces of the other model.

For primal, the random material properties specified by vector M__ occur only in

the objective function and these determine the failure mode of the frame since

the solution must surely belong to at least one of the extreme points.

Therefore, unlike other procedures that require repeated solutions of structural

model, one just needs to explore the polyhedral region for identifying the

solution for a different (random) M_ vectors. Similarly, the vector M__ occurs

only in the right hand side of static LP model and failure modes (facets) can be

generated from the dual variables.

DUALITY

- Static/Kinematic

- Mathematical programming

PHYSICAL INTERPRETATION

Limit states/Failure modes

Hyperplanes/Extreme points

Relationships
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RIGID PLASTIC FRAMES WITH MULTIPARAMETRIC LOADING

Proportional loading indicates a system of concentrated loads, each of which is

proportional to a parameter, _. However, the actual loading on the structures

may not satisfy the restriction of proportional loading. It is necessary, in

such cases, to consider the independent variation of load factor parameters for

the various loads acting on the frame. A static multiobjective linear

programming (MOLP) model has recently been formulated. Q (q = I, 2 ...... Q)

denote independent load parameters and Ckj and Dkq are the constant coefficients.
Unlike scalar optimization problems, the _ector optimal solutions are not

completely ordered and there is no unique 'optimal' solution. The notion of an

optimal solution is replaced by the concept of weak noninferior solution.

The geometrical structure of the MOLP static model shows that it has two

different associated polyhedra instead of just one, as in LP models. These

polyhedral regions are defined by the feasible regions of the MOLP model in the

objective (load) space and decision (basic variable) space, respectively. The

two polyhedral feasible regions have frontiers made up of only polyhedral facets.

It has been shown [6] that maximal facets of these polyhedra correspond to the

failure modes of the structure and union of all maximal facets gives the global

limit surface for the frame.

STATIC MOLP MODEL

Max X- = Max{;_l, " "';_Q }T

J Q
s.t. _ CkiMj - _ Dkq ;_q=O

j=l q=l

k=l, ", M

- +

-Mpj < Mj= < Mpj

j= 1,'' -, J
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RESPONSE REGIONS

These response patterns for frames define the limits of variation of random

variables and once such patterns are generated for a given structure, different

solutions corresponding to any random vector must belong to the defined regions.

Therefore, by considering powerful algorithmic methods developed in mathematical

and computer science literature for extremum problems, alternative structural

responses can be predicted without reanalysis of the structure. Often, it is

possible to further simplify the procedure in some cases, based on the

decomposition of parametric space. These procedures decompose the parametric

space into mutually exclusive (non-overlapping) and collectively exhaustive

subdomains corresponding to various failure modes [7]. This enables one to

replace the consideration of an infinite number of parameter combinations with a

finite number of parametric regions, which are also polyhedral. Multiparametric

procedures lead to partitioning of both the load and basic variable space. All

these procedures do not in any way depend on the probabilistic information. The

probability considerations can be subsequently introduced to evaluate structural

system reliability. This facilitates investigation of different loading

conditions and probabilistic assumptions since reliability evaluations can he

obtained without any further structural analyses.
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SYSTEM RELIABILITY EVALUATION

System reliability evaluation of frames for ultimate collapse is simplified by

the use of structural responses generated by extremum procedures. For example,

in the static case, a method has been proposed [8] which replaces the safe

polyhedral response region of the frame with an analytically tractable region of

equivalent volume, where the term volume is to be interpreted in a broad sense,

since the volume may be of different dimensions and order. Reliability can be

computed from the properties of the substituted region, which can be a

parallelotope, hypersphere, hyperellipsoid, or any other suitable form. Use of

hyperspherical equivalent region leads to the expression for structural system

reliability in terms of the chi-square distribution.

System reliability evaluation of frames for ultimate collapse by the kinematic

approach requires the enumeration of the failure modes, calculation of the

probability of failure for each mode and then computation of the overall

reliability by suitable aggregation. A simulation approach that exploits the

special structure of the kinematic model has been proposed [9]. Load and

resistance proportionalities are determined by each simulation, and the

associated failure mode is identified as an extreme point of the LP model. The

procedure gains its efficiency from the fact that every simulation derives an

associated failure condition and its probability which are then combined into a

system reliability.

SYSTEM RELIABILITY- STATIC APPROACH

Replacement of response regions by an
equivalent region

Concept of equivalence

Hypersphere, parallelotope, hyperellipsoid

SYSTEM RELIABILITY- KINEMATIC APPROACH

- Generation of failure modes

- Simulation procedure
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CONCLUSIONS

Extremum methods of structural analysis offer significant promise for advances in

the analysis of random structural systems and their reliability assessment. The

complexity of the physical problem and the randomness of the variables makes the

solution otherwise intractable. Fortunately, the mathematical nature of the

problem lends itself to mathematical programming formulations and use of powerful

algorithmic procedures. This has been illustrated by consideration of rigid

plastic frames subject to collapse by flexural action. Linear and multiobjective

linear programming models were discussed for structural systems analysis under

proportional and multiparametric loading, respectively. Duality relations

between the static and kinematic approaches for each of these models and their

response patterns lead naturally to alternative methods for system reliability
evaluation.

Author's ongoing research aims to demonstrate the use of extremum methods for the

reliability analysis of different structural systems for varying material

behavior, structural dynamics problems and stability analysis. It is planned to

explore structural behavior patterns with the objective of gaining insights into

random structural behavior, dual relationships of patterns from static and

kinematic considerations, causes of redundancy and the feasibility of using

insights for the development of simplified and efficient computational methods

for structural reanalysis and system reliability evaluation.

• PROMISE OF EXTREMUM METHODS

EXTENSIONS

Other structures

Material behavior models

Structural dynamics problems

Stability analysis

• REDUNDANCY

• STRUCTURAL REANALYSIS

• SIMPLIFIED METHODS FOR SYSTEM RELIABILITY
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Introduction

A quantitative methodology is being developed at JPL for assessment of risk of failure of
solid rocket motors. This probabilistic methodology employs best available engineering
models and available information in a stochastic framework. The framework accounts for

incomplete knowledge of governing parameters, intrinsic variability, and failure model
specification error. Earlier case studies have been conducted on several failure modes of

the Space Shuttle Main Engine (refs. 1,2,3). This paper describes work in progress on
application of this probabilistic approach to large solid rocket boosters such as the
Advanced Solid Rocket Motor for the Space Shuttle. Failure due to debonding has been
selected as the first case study for large solid rocket motors (SRMs) since it accounts for a
significant number of historical SRM failures. Impact of incomplete knowledge of
governing parameters and failure model specification errors is expected to be important.

Debond Failure in SRMs.

SRM failure modes generally fall into the categories of debonding, nozzle failure,
propellant cracking, combustion instability, field joint failure, O-ring failure, and case
burst. As an initial case study, this work is focussing on failure due to debonding.
Motivation for looking at debond failure is clear, as stated in reference 4:

It is probably a conservative estimate that well over half of all mishaps (and this
includes the latest space shuttle disaster) are due to the flame front prematurely
reaching file chamber walls, or getting into places where it should not. Usually
the cause is a failure of the propellant-liner bond, or the propellant-to-insulation
bond, and sometimes insulation to chamber wall bond.

The problem of solid propellant debonding has received considerable attention in the
literature. For example, in reference 5, a finite element computer code was developed for

evaluation of the state of stress in solid propellant case liner bond regions. Also, a closed
form fracture mechanics solution which accounts for the dissimilar material properties on
either side of the bondline was proposed for predicting debond growth. Reference 6
discussed both stress-strain and fracture mechanics techniques for predicting bondline
failures.

The underlying chemistry and environment of the bond region are quite complex. These
issues are addressed in references 7 and 8. However it may not be necessary to incorporate
all of the complexity considered in these references in order to satisfactorily assess
reliability. Inherent variability of various parameters in the bonded region may be
accounted for through the statistical approach described briefly below, and in detail in
reference 1.

The Debond Failure Mode. The sequence of events leading to failure by debonding is
shown in Figure 1. Failure due to debonding begins as a defect, or crack, in the bond
region, referred to as the "Initial State" in Figure 1. This defect may occur as a result of
normal manufacturing processes, or perhaps as a result of foreign particle inclusion. In
general there will be a distribution of size and locations of a number of defects. These
defects may grow prior to launch as a result of induced bondline stresses from shipping
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andhandlingloads,thermalcycling,andmoistureabsorption.Additional defect growth
may result from vibrations during launch, axial acceleration, case pressurization,
aerodynamic heating, or vibrational loads. The result can be a defect of a certain size and
location such that the flame front can enter the defect region. The debonded region
contributes additional surface area for burning. This can lead to uneven burn and increased
pressure. If the pressure becomes higher than the design pressure, it can cause mechanical
deformation and further defect growth. Case burn-through becomes a possibility, and
detonation can result if the pressure rise is rapid enough (ref. 9).

The Probabilistic Failure Assessment (PFA) Me_hofloDgy.

The PFA Methodology developed at JPL is a quantitative technique for estimating reliability
warranted by the available information. (See reference 1 for a detailed description of PFA.)
For cases of unacceptable risk, PFA identifies areas where design improvement and/or
additional data are required.

The core of the PFA approach consists of analytical engineering models which characterize
failure phenomena in terms of governing parameters. Such failure models typically express
a failure parameter such as burst pressure, flaw size, or flaw growth rate, as a function of
"drivers." These drivers, i.e., the governing parameters, determine the value of the failure
parameter. The drivers usually include geometry and dimensions, loads and environmental
conditions, and relevant material properties for the operating environment.

In this probabilistic approach, the drivers are characterized by probability distributions
These probability distributions express uncertainty regarding driver values within the
ranges of possible values. The accuracy of the failure model is treated as another driver
which is probabilistically characterized. The probability distributions for the drivers are
derived from available information regarding uncertainty of their values. The drivers are
characterized using the information that exists at the time of the analysis. There is no
specific information requirement for any driver.

The driver distributions reflect incomplete knowledge and limited information regarding
driver values as well as intrinsic variability. The criteria of not overstating the available
information in the driver probability distributions must be observed in order to

appropriately represent the risk that results from incomplete knowledge and limited
information.

Performance, weight, and cost requirements that propulsion systems must meet may not
permit consistently, verifiably conservative values for analysis parameters to be used in all
cases. Deterministic analyses for such applications must be "calibrated" by means of
directly relevant past experience with applications that are similar in terms of the knowledge
of input parameters, the validity of engineering models under the conditions of an
application, and variability of manufacturing processes.

When deterministic analyses are used in applications that are removed from the directly

relevant experience base, as is often the case for launch vehicle propulsion systems, the
uncertainty or risk associated with their results increases. Since a deterministic analysis
provides no quantitative risk estimate, an assessment of risk incurred as a result of having
chosen any specific set of values for the governing parameters of the analysis must be left
to the vicissitudes of judgment formed in the absence of directly relevant experience.

Deterministic analyses of failure modes under such conditions of limited information thus
becomes arbitrary. Launch vehicle propulsion systems are invariably subject to some
number of failure modes for which the governing parameters may not be well known, e.g.,
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theknowledgeof loads and/or local environments may be significantly uncertain and the
validity of analytical models used to characterize failure phenomena may be questionable.
Under such conditions of limited information and uncertain analyses, the implicit
consideration of risk by means of qualitative judgments based on deterministic analysis of
failure modes is inadequate.

In contrast, the PFA Methodology quantitatively accounts for driver specification error

through appropriate formulation of the driver probability distribution. Application of a
Monte Carlo technique using the driver distributions, coupled with the engineering model,

produces a set of simulated failures. These simulated failures are then fit to a parametric
failure distribution which is treated as a Bayesian prior distribution. This prior distribution
is then modified using Bayesian updating to incorporate test and flight experience. The
result is a posterior probability distribution for the failure mode. Overall mission risk can
be estimated by aggregation of critical failure mode results.

The resultant risk may be judged to be acceptable or unacceptable. If risk is unacceptable,
the framework of the PFA analysis facilitates the procedure for choosing actions which will
reduce the risk. The effect on risk, for example, of acquiring additional data, improving
the engineering model, or making design changes, can be determined directly and
quantitatively.

Application of PFA Methodology to Debonding.

At this writing, a flowchart for the engineering model for debonding has been developed.
The model, shown in Figure 2, incorporates the processes described in the debond failure
mode description above. Standard nomenclature is used: KI and KII are the mode I and

mode II stress intensity factors, respectively. It is expected that some parts of the flowchart
will require more detail while other parts represent unnecessary detail, and will be revised.
For example, finite element and finite difference calculations are incorporated in the
flowchart loop. These would be extremely demanding of computational time if they were
required to be within the Monte Carlo analysis. Considerations of this type have been
encountered before (refs. 2 & 3), and some techniques have been found which help
minimize cpu time. Modifications of the Monte Carlo approach and alternative methods
will also be considered.

It is important to reiterate that the risk assessment will be made using available information-
-no additional program to develop data is required (although advantage will be taken of
such opportunities, in particular appropriate information from the Solid Propellant Integrity
Program, ref. 10, will be utilized). For example, variability or scarcity of data in material
properties can be accounted for statistically. If the resultant risk is unacceptable, the
structure of the PFA methodology can suggest options which will have the greatest impact
on the risk estimate. Possible options include design or processing changes, improved
inspection capability, acquisition of additional materials characterization data, and reduction
in uncertainty of engineering models.

Interaction with experts in the SRM industry have been and will continue to play an
important role in technical development of this program.
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DEBOND FAILURE PROCESSES

INITIAL STATE

SHIPPING & HANDLING LOADS

• related to inspection capability
• spatial and size distribution of defects
• size/geometry of grain
• matedaJ pmperlJes
variability:spatial, sample-to-sarr_e

• "stress-relieving" insulalion

• thermal environment

• frequency, amplitude, direction of loads

LAUNCH LOAD ENVIRONMENT
prior to combustion in defect

• frequency, amplitude, direction of loads
• single/dual grain

COMBUSTION LOADING

FAILURE: E.G.,
NO FAILURE CASE BURST OR

BURN-THROUGH

• chamber pressure
• (erosive) burn rate
• grain geometry
• crack geometry
• dual grain

• case geometry
• case material properties
• pressure and temperature in crack

Figure 1. Diagram of debonding processes. Comments to the right of the boxes represent
a partial list of relevant factors.
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No

Initial State /

*Location and size of debond
defects

-Material properties

.Residual thermal stresses

Prk)r to flame front contact: 1
•Load stress history

•Thecmat history

temperature dis_ibution to get

material properties

!

Element Analysis

!

No

• I

Nonfailure at this point: 1

•initiation time < burn l_me

"Klor II < K cf f°r initiation

-crock size very small

I

compute crack growth rate & initiation_

time by quasi-elastic method |

(approximate viscous analysis) J

I! co,,J s.,o.
oads due to combustion. |

ompressible combustion problem to|

olve for pressure, temperature, & flov_

n crock. (Finita-diflere_nce implicit |

olution.) J

Yes

es fFailure:

|.crack growth rate large

|.crack growth rate > bum rate

No Failure |-crock size large

|°K t or II> K cr for unstable

growth

Figure 2. Flowchart of PFA debond model.

120



References:

1. Moore, N., et al, "A Methodology for Probabilistic Prediction of Structural Failures of
Launch Vehicle Propulsion Systems," AIAA 31st Structures, Structural Dynamics, and
Materials Conference, April, 1990.

2. Newlin, L., et al, "Probabilistic Low Cycle Fatigue Failure Analysis with Application to

Liquid Propulsion Rocket Engines," AIAA 31st Structures, Structural Dynamics, and
Materials Conference, April, 1990.

3. Sutharshana, S., et al, "Probabilistic High Cycle Fatigue Failure Analysis with
Application to Liquid Propulsion Rocket Engines," abslract submitted to the 31 st
Structures, Structural Dynamics, and Materials Conference, April, 1990.

4. Oberth, Adolf. E.: Principles of Solid Propellant Development. CPIA Publication 469,

September 1987.

5. Francis, E. C.; Deverall, L. I., Carlton, C. H., Zitzer, H. J., Knauss, W. G., Becker,

E. B., Dunham, R. S.: Case Liner Bond Analysis, AFRPL-74-23, July 1974.

6. Predictive Techniques for Failure Mechanisms in Solid Rocket Motors, AFRPL-TR-79-
87, January 1980.

7. Liu, E. K.; McCamey, R. K.: Ballistic Missile Bonding Technology, AFRPL-TR-86-
084, June 1987.

8. Fitzgerald, J. E.; Hufferd, W. L.: Handbook for the Engineering Structural Analysis of
Solid Propellants, CPIA Publication 214, May 1971.

9. Kumar, M.; Kuo, K.K.: Chapter 6. Flame Spreading and Overall Ignition Transient, in
Fundamentals of Solid Propellant Combustion, K. K. Kuo, editor, AIAA Progress in
Astronautics and Aeronautics series, 1984.

10. Annual Review of the Bondlines Work Package of the Solid Propellant Integrity
Program, held at Science Applications International Corporation, December 12-13, 1989.

121





N91-10310

GLOBAL OPTIMIZATION METHODS FOR

ENGINEERING DESIGN

Jasbir S. Arora

OPTIMAL DESIGN LABORATORY

College of Engineering
The University of Iowa

Iowa City, IA 52242-1593

123



PROBLEM DEFINITION

The problem is to find a global minimum for the Problem P. Necessary and
sufficient conditions are available for local optimality. However, global solution can be
assured only under the assumption of convexity of the problem. If the constraint set S is
compact and the cost function is continuous on it, existence of a global minimum is
guaranteed. However, in view of the fact that no global optimality conditions are available,
a global solution can be found only by an exhaustive search to satisfy Inequality (5). The
exhaustive search can be organized in such a way that the entire design space need not be
searched for the solution. This way the computational burden is reduced somewhat.

Problem P: Find a design variable vector x to minimize a
cost function

fix) for x s S c R n (1)

where S is the constraint set defined as

S={xlgi(x)=0, i=ltop; gi(x)<0, i=(p+l) tom} (2)

Local Minimum x*

fix*) < f(x) for all x _ N(x*,8) _ S (3)

N(x*,8) = {x I IIx-xll < 8} (4)

Global Minimum x*

f(x*) _<f(x) for all x _ S (5)
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GLOBAL OPTIMIZATION ALGORITHMS

Most global optimization methods developed in the literature are for the
unconstrained problems. It is generally assumed that the constraints can be handled by
adding a penalty term to the cost function. Therefore, unconstrained algorithms can be
useful. Some of the methods date as far back as 1960s. In the following, we outline some
of the algorithms that have been presented in the literature.

The Tunneling Method

The tunneling method was initially developed for unconstrained problems and then
extended to the constrained problems [1]. The basic idea of the method is to first find a

local minimum x* for the function f(x). Any reliable and efficient method can be used in
,

this step. Once this has been done another starting point is found that is different from x

but has cost function value as f(x*). This can be expressed as a problem of finding root of
the nonlinear equation

f(x) = f(x*) (6)

that is different from x*. Again, any reliable and efficient algorithm for finding roots of
nonlinear equations, such as the stabilized Newton's method can be used. Once the root of
Eq. (6) has been obtained, the method to determine local minimum of f(x) is used to
determine the new solution point. The process is repeated until there is no other root of Eq.

(6) except x = x*. The nonlinear function defined in Eq. (6) or its modification is called

the tunneling function. The phase where root of Eq. (6) is sought is called the tunneling
phase.

f(x)

x 1

x G

Figure Basic Concept of Tunneling Algorithm.
The Algorithm tunnels below irrelevant
minima and approaches the global
minimum in an orderly manner [ 1].

X
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GLOBAL OPTIMIZATION ALGORITHMS (Cont'd)

Stochastic Methods

These methods are based on statistical concepts [2,3].

Random Search
Global-Local Phase
Multistart

Region of Attraction
Clustering Method

The Annealing Algorithm

This algorithm, also based on probabilistic concepts, can be used to find global
optimum solution [4].

Can be used for discrete variables

Analogy between Combinatorial Optimization and Annealing Process
Concept of Statistical Mechanical System
H(x): Hamiltonian (total energy)

Boltzmann-Gibbs Distribution:

1
p(x) = Z exp{-H(x)/T}

where T is a temperature and Z is a normalization constant (statistical sum).

Let x* be the equilibrium configuration of the system, i.e.,
min

H(x*) = H(x)
xES

Then the probability of the equilibrium state is maximal, i.e.,

max

p(x*) = xeS p(x)

(7)

(8)

(9)

The Genetic Algorithm

This method is also in the category of stochastic search method, such as the
simulated annealing [5,6], in that both methods have their basis in naturalprocesses.

Suitable for Discrete Variable Optimization

Three Operators:
1. Reproduction
2. Crossover
3. Mutation
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ZOOMING ALGORITHM FOR GLOBAL MINIMUM

SOLUTION

This new global minimization algorithm combines a local minimization algorithm
with successive refinements of the feasible region to eliminate regions of local minimum
points to "zoom-in" on the global solution. The basic idea is to initiate the search for a local
minimum from any point - feasible or infeasible point. Once a local minimum point has
been found, the problem is redefined such that the current solution is eliminated from any
further search. The search process is reinitiated and a new minimum point is found. The
process is continued until no other minimum point can be found.

Once a local minimum point has been obtained, the problem is redefined by adding
an additional constraint as follows:

minimize f(x)

subject to

gi(x) = 0, i=ltop

gi(x) < 0, i = (p+ 1) to m

f(x) < 7 f(x*) (10)

where f(x*) is the cost function value at the current minimum

point and y is any number between 0 and 1 if f(x*) > 0, and y >

1 if f(x*) < 0. Constraint of Eq. (10) can be written differently as

follows:

f(x) < c (11)

f(x) _<f(x*) - r If(x*)l (12)

where c < f(x*) and 0 < r < 1.
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EXAMPLE ILLUSTRATING THE CONCEPT

Minimize f(x) = -(x 1- 1.5) 2 - (x 2- 1.5) 2

subject to

Xl+ x 2- 2 < 0

-Xl < 0, -x 2 < 0

There are three local minimum points:

1. (0,2), f = -2.5

2. (2,0), f = -2.5

3. (0,0), f = -4.5

The figure illustrates the basic concept of zooming algorithm.

F = -'1.5

350

f = -3.0

3OO _ : -2.5

0 50

-050

-050 )00 050 1.00 1.50 2.00 2.50 3.00 3,50 4(

Figure: Graphical Solution for the Example
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Minimize

subject to

NUMERICAL EXAMPLE

f(x) = 9x_ + 18XlX 2 + 13x 2

2 2

x 1 + x 2 +2x 1 = 16

This problem has two local minimum points:

1. (2.5945,-2.0198), f- 19.291

2. (-3.7322,3.0879), f-- 41.877

5 O0

'IO0

h=O 0

1.00 r=19.291

_=41.877

-400 -3.00 -1.00

Figure: Graphical Solution for the Example
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NUMERICAL EXAMPLE

Minimize
3 2

f= 2x 1 + 3x 2 -x 1 -2x 2

subject to

x 1 + 3x 2 _ 6

5x 1 + 2x 2 _ 10

x 1 , x 2 _ 0

This problem has four local minimum points:

1. (0,0), f= 0.0

2. (2,0), f=-4.0

3. (0,2), f=-2.0

4. (1.38462,l.53846), f = -0.003654

ZSO -'t00

t 60
F=O 000 & -0,003G5

4

1 O0

0 70

o 4o

-0 20

0 10 0.40 0,70 1.00 130

Figure: Graphical Solution for the Example
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SIMULTANEOUS CONTROL AND DESIGN

Problem Formulation [7,8]

OF STRUCTURES

State Equation: x=Ax+Bf

A __

"22_ m ,

Performance Index:

tPI = 0 [(x,Qx) + (f, Rf)ldt

State Feedback Control Law:

f = -Gx, G = R-1BTp

ATp T- PBR-1BTp + PA + Q = 0

Close-Loop System: x = Ax

m

A=A-BG

Complex Eigenvalues and Damping of Close-Loop System

Li= _i+j ff_

_i = -_i/(_ 2 +_2) 1/2
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EXAMPLE: ACOSS-IV Model

Minimize weight, W = ]_ PiAiLi

subject to

ff)l = 1.341,

For Global Solution:

o3j - coj < 0,

Ai2 - A i < 0,

_2 > 1.5,

W<W*

j= 1,2,..

j= 1,2,..

{i = 0.1093, i= 1 to4

10 9 2

5 6

Figure: ACOSS-IV Model
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RESULTS FOR 12-BAR ACOSS-IV MODEL

Problem No. ---> 1 2 3 4 5

Cost Constraint 100.0 28.00 24.00 20.75 19.00

(w*)
Optimum Weight 31.25 28.00 23.29 20.75 No sol.

No. of Iterations 35 26 36 28 35

Starting Point for all problems:

A i = 1000 for i = 1,2,5,6; A i = 100 for others

Ai, _=10,i=l to 12

Convergence criteria:

Constraint Feasibility < O.1%

IISearch Directionll < 0.01
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CONCLUSIONS

• Zooming algorithm for global optimizations appears to be a
good alternative to stochastic methods• More testing is
needed.

. A general, robust, and efficient local minimizer is required.
IDESIGN [9] was used in all numerical calculations which is

based on a sequential quadratic programming algorithm.

• Since feasible set keeps on shrinking, a good algorithm to
find an initial feasible point is required. Such algorithms
need to be developed and evaluated.
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Abstract

One-point and two-point exponential functions have been developed and proved to be very effective
approximations of structural response. The exponential has been compared to the linear, reciprocal and
quadratic fit methods. Four test problems in structural analysis have been selected. The use of such
approximations is attractive in structural optimization to reduce the numbers of exact analyses which

involve computationally expensive finite element analysis.

1. INTRODUCTION

The use of detailed, computationally expensive, finite element models has motivated researchers to
develop approximations of structural response. These approximations are useful for re-design particularly
with use of optimization techniques, where the number of finite element analyses can be significantly
reduced. The problem considered here is to construct local approximations using function values and
derivatives of the structural response at one or two design points. The term local approximation used here
means that the approximation is valid only in the vicinity of the current design point and is different from
global approximation methods based on simplified design models or reduced basis techniques which seek to
approximate the response in the entire design space.

Specifically, let x be the current design point, where x = (Xl, x2 ..... Xn) T is a design variable

vector. Let g _) be a structural response such as element stress or fundamental frequency, which enters as
a constraint function in an optimal design formulation. The problem is to construct a local approximation,

ga_), based on the function value and derivatives evaluated at x 0 and possibly another design point. Then,

subsequent evaluations of the structural response in the neighborhood of x0 can be estimated using ga rather
than the exact response g which will involve finite element computations. A variation of this problem is as

follows: Let p be a direction vector in design space which has been determined to be desirable in terms of

reducing the cost function subject to constraints. Usually, I2 is determined by solving a linear program or

quadratic program in optimization algorithms. Now, let x 1 be a second design point along p such that

I1___ -_x011 represents a move limit along p. The problem is now to develop a (local)line approximation ga(_x_)

such that ga(x) = g(x) for points x along the line joining x 0 and x 1, given by

x=(1-Q) x0+_x 1, 0_<__<1 (1)

Here, the approximation ga is to be constructed using structural response information at _x0 and possibly x 1.

A comparison of various approximation methods has been carried out by Haftka, et. al. (ref. 1) and
Haftka (ref. 2). The methods include linear and quadratic Taylor series expansions involving first order and
second order sensitivity analysis (refs. 3-5), approximations based on use of reciprocal design variables
(refs. 6, 7) and convex approximations (ref. 8). Recently, force approximations have been used by
Vanderplaats (ref. 9). Use of rational polynomials may be found in Ref. 10. In this paper, exponential
approximations of the form

tl

ga = C 1-I xai
i=1 _ (2)

are considered and compared with linear, reciprocal and quadratic polynomial methods. It is noted the
exponential approximation discussed in Ref. (1) is of a different form than that in (2). The motivation for
choosing exponential approximations of the form in (2) is discussed below.
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2. BASIS FOR EXPONENTIAL APPROXIMATIONS

The motivation for approximating structural response using the exponential form in (2) is discussed
in this section, as also the basis for use of reciprocal variables and force approximations. The basis for
most approximations comes from the equation

P
o(A)=--

A (3)

which states that stress = element force/area. Area A is the design variable here.

Reciprocal Variable_

The choice of reciprocal design variables is natural, since choosing x = 1/A as a variable results in

= 6(1 / x) being linear in x:

O(x) = P x (4)

In the x-space, larger more limits can be imposed on changes in design, leading to faster convergence.
Now, in a statically indeterminate truss, the stress function is of the form

P(A)
_(A) -

A (5)

The force P is no longer a constant, but dependent on design. The choice of x=l/A is still beneficial as it
tends to linearize the stress function. In general, a first order Taylor service expansion of g(3.) in the
reciprocals of the variables Yi, = 1/xi, i=l ..... n, written in terms of the original variables, xi, is given by

nga(x)=g(x0)+Y- (xi-Xio) Xio 0g/_)xi
i=1 (6)

Force ADproximation_

The idea here is to approximate P(A) in (5) by Taylor series as opposed to o(A), and obtain

_a (A) -
P(Ao)+_(Ao) (A-A o)

A (7)

In the case when P is a constant, the approximation yields aa = P/A which is exact. Otherwise, curvature
information is retained in (7) and yields a superior approximation to the conventional tangent approximation
Oa = o(Ao) + O_/OA • (A-Ao).

Exponential AoDroximations

The approximation introduced in this paper is now discussed. Equation (3) may be re-written as

{_ (A) = P A -1 (8)
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Thus, the stress is seen to be exponentially related to design variable A. This is the basis for approximating
structural response in n-dimensional space by

n
ai

ga (x) = C I'I x i
i=1

where Xl, x2 ..... Xn are non-negative design variables. Choice of constants C and ai are discussed in the
next section.

A second and more general basis for exponential approximations lies in the concept of 'elasticity', a
quantity used by economists and also relevant in nonlinear stress-strain constitutive laws. Consider a
function g = g(x), where x > 0 is a scalar variable. The elasticity of the function is defined as

d(ln g)

eg - d (In x) (9a)

or,

dg/g

eg = dx/x (9b)

Physically, elasticity may be considered to be in the limit, the percentage change in the function due to a

percentage change in the variable. For instance, g=x 3 has a value eg=3, and g=px -1 has eg = -1. The
exponents ai in (2) may be considered to be estimates of the elasticity, at the current design point.

In this section, reciprocal and force approximation methods have been introduced using the

fundamental equation _ = P/A as a basis. Work is being done to generalize these methods to be applicable

to frames and certain elasticity problems as well. The exponential method of approximation has both G=P/A
as a basis as well as the concept of elasticity of a function. One advantage of exponential approximations of
the form in (2) is that, for C > 0, the function ga is a monomial, which opens up the possibility of geometric
programming (ref. 11).

3. CONSTRUCTION OF THE EXPONENTIAL APPROXIMATION

The problem is to find the coefficient C and exponents ai, i=l ..... k, such that the approximate
n

function ga(_X) = C 1-l x ai closely matches the exact function g(__) in a neighborhood of the current point x O.
i=1

One-point and two-point approximations will now be given.

1-Point Approximation

Here, constants C and {ai} are determined using information only at one point x 0. The technique is

based on matching the function value and shapes of ga and g. This technique has been used in the context
of unconstrained geometric programming where general functions are reduced to posynomial form. Morris
(ref. 11) discusses an application of this concept to structural design problems. We have, upon taking
logarithms,
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Differentiatingwith respectto xj yields

Note that ga(X.0) = g_0).

13

lnga =ln C+ _a ilnx i
i=1 (10)

3g a /_)xj "- ga (11)

Equating Dga]Sxj in (11) to the exact slope 8g/Dxj at _x0 yields the exponents

xj _g / _xj

aj _- g Ixo (12)

The coefficient C is then obtained from ga_ 0) = g_0) as

C=g/[]. x ai
i

IX o
(13)

2-Point A_Droximit|iorl

Information at two points are used to construct the exponential approximation. Let _x0 be the current

design point and _1 be a second point, which usually is a point along a desired search direction in design

space. The quantities g(x.0), Vg (3.0) and g (3.1) are now used to determine C and {ai}. A least squares
formulation is adopted herein. The variable C and {ai} are obtained from the minimization problem

{( )( )21 n a. 2 n ai
__ 1

E= 2 g0 - C ]-lXio + gl- C I-lxil
i=1 i=1

n k a_

+ _ _,Oxj -Cl-Ixi°'lnxjj=l i=1 .,
(14)

The minimization of the least squares objective function E is carried out using a modified Newton algorithm,
with a Levenberg-Marquardt correction to the Hessian when descent is not obtained (ref. 12). The

algorithm requires the gradient vector

VE = (DE / 0C, 0E / 0al, ..., DE / c3an ) (15)

and the Hessian

H E = [[D2E

DC2/

Lsymmetric

_2E / _C_a 1 ...

O2E / Da_ ...
o

D2E [ DC0a n ]

D2E / 0a 1 Dan

02E / an2
(16)
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Thesederivativesarecomputedfrom analyticallyderivedexpressions.
below.

Algorithm

Step1.

Step2.

Theleastsquaresalgorithmis given

2-Point Exvoqgntial

Choose the initial estimates of C and {ai} from (12), (13), and eo = 0.001

Solve

(H E + _I)__ =-VET
(17)

and update Cnew= C + _51, (ai)new = ai + _i+l, i = 1, ..., n.

Step 3. Evaluate Enew. If Enew < E the set C =Cnew, {ai] = {ailnew, reduce e, say, _:= e/10 (ife <

eo, set e = eo) and go to step 2. If Enew > E, then increase e = 10.e and go to step 2.

The procedure above is terminated when relative and absolute reductions in E for three consecutive iterations
are less than a specified tolerance.

4. TEST PROBLEMS AND RESULTS

Four test problems relating to structural design have been considered. The 1-point and 2-point
exponential approximations developed in Section 3 are examined. Comparison of the approximation to the

original function is done along a line joining two design points x 0, x 1, or at points x where

x - (I - _) x 0 + _ x 1 (I 8)

where _ is scalar variable, 0 < _ < 1. For comparison, the linear (tangent) approximation based on

ga(X_) = g(x 0) + Vg(_x 0) • (x - x 0)

the reciprocal-linear approximation given in (6), and the quadratic polynomial along the line given by

ga(_) = a + b_ + c_ 2

(19)

(20)

where coefficients a, b, c are obtained from g(A0), g(A I) and dg/d_ (at 4=0) = Vg(A 0) • _l-x_0). Thus, the

1-point exponential, linear, and reciprocal require only g(x0), Vg(x0), while the 2-point exponential and

quadratic polynomial require, in addition, g_l). The error between g and ga along the line is shown both
graphically as well as quantitatively through a relative error criterion

(21)

and a maximum error criterion

RELEER : [(gi- gai)] gi
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MAXERR= max ]gi-g il
l_<i<N (22)

Above, gi = g(x (_i)) is the exact function evaluated at the ith discretization point along the line in (1 g), gai is

the approximate function evaluated at _i, and N, the number of discretization points, is chosen equal to 20.

Cantilever Beam

The axial stress function in a cantilever beam of rectangular cross section, subjected to axial and

transverse loads, is given as

1000 6000
_(x) = +

XlX 2 XlX22 (23)

where Xl, x2 are the width and depth of the cross section, respectively. The choice of design points is

= (1,2) T in., x 1 = (5,8) T in.

x0

Referring to Fig. 1, the 2-point exponential is in excellent agreement with the original function. The
1-point exponential behaves just as well as the 2-point exponential and is not shown in the figure. The

exponential approximation to _) in (23) is of the form

O'a(_x)= 6727.2 Xl 0"891 x21"750 (24)

The quadratic polynomial (Fig. 1), as well as the tangent and reciprocal approximations behave very poorly.
The values of RELEER and MAXERR in (21), (22) for this problem are given in Table 1. It is noted that

various choices ofx 0 and x 1 have shown the same trend.

Table 1. Cantilever Beam

Approximation Method Relative Error Maximum Error

1-point exponential

2-point Cxponential

Linear (tan cent)

Reciorocal

Ouadratic Polynomial

0,49.3

0,492

700,0

105.4

96,9

1.3.1

13.0

0.165 E5

0.022 E5

0.033 E5
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Tension-Comvression Soring

The shear stress function in a spring design problem, with Xl = coil diameter and x 2 = wire diameter,
is given by

z (.x_x)=
8000x 1

_x32 t4x 1 -4x 2 (25)

For this problem, x 0 = (1.0, 0.3) T and x 1 = (0.3, 0.05) T in. As with the beam, the 2-point and 1-point

exponentials are also in close agreement with the original function. Table 2 provides an error summary for
all the methods. The linear, reciprocal and quadratic polynomial are poor by comparison (Fig. 2). Other

choices of x 0, x 1 show the same trend for this problem.

Table 2. Tension-Compression Spring

Approximation Method

1-point exponential

2-poim exponential

Linear (tangent)

R.eciprocal

Quadratic Polynomial

Relafiv¢ Error

0,091

0.088

2.464

1.640

11.060

Maximum E_or(x 106_.)_

0.496

0.067

7.265

5.876

3.539

Three Bar Symmetrical Truss

The natural frequency of a three bar truss (re(. 3) with x 1, x2 = cross sectional areas, is described
by the function

Xl

(_x) = 2"q_ x 1 + x 2
(26)

Two sets of design points, leading to different performances, are chosen. These sets are

I. x 0 = (3,4) T in 2 , x 1 = (10,5) T in 2

II. x 0 = (5,5) T in 2 , x 1 = (1,10) T in 2

(27)

SetI: Referring to Fig. 3 and Table 3, the 2-point exponential based on the best fit formulation yields the
best approximation, with

co(x) = 0.2877 Xl0'261 x20"342 (28)
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The 1-pointexponentialis poorer,with

_(x)= 0.2635 Xl0"32 x20"32- (29)

Set II: Along the search direction, the original function is quite flat. In fact, the 1-point exponential
provides a relatively poor approximation because of the flat nature of the function. The quadratic polynomial

is best here. Even though the 2-point exponential is second-best, (Fig. 4), the best-fit nature of the
approximation, while averaging the error, does not provide an interval within the line where the error is
small. This may cause difficulty for designs near the optimum. Finally, the use of reciprocal variables does
not show any advantage over the direct variables for this case.

Table 3. Three Bar Symmetrical Truss

Approximation Method

1-point exponential

2-point exponential

Linear (tangent)

Reciprocal

Quadratic Polynomial

(Set I) (Set II)
Relative Error

0.247

0.059

0.810

0.199

0.128

Maximum Error Relative Error Maximum Error

0.0286 1.386 0.065

0.0053 0.605 0.028

0.100 1.210 0.060

0.022 1.902 0.060

0.012 0.074 0.004

Ten Bar Truss

The ten cross sectional areas of the truss shown in Fig. 5 are the design variables. Points x_0and x 1
are chosen as the initial and optimum design obtained in Ref. (1), as

xO = (5., 5., 5., 5., 5., 5., 5., 5., 5., 5.) y in 2
and (30)

x 1 = (7.94, 0.1, 8.06, 3.94, 0.1, 0.1, 5.74, 5.57, 5.57, 0.1) T in 2

Again, both 1-point and 2-point exponentials provide excellent approximations. The number of
design variables do not seem to affect their quality. Interestingly, the reciprocal approximation provides

equally good results, but to within a certain distance from x 0. Near x 1, the reciprocal abruptly diverges
(Fig. 6). With smaller movelimits, of course, the reciprocal will be excellent for this problem. The
quadratic polynomial provides a good approximation for this problem. Error estimates are given in Table 4.
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Table4. TenBarTruss

ApproximationMethod

1-pointexponential

2-pointexponential

Linear(tangent)

Reciprocal

OuadraticPolynomial

RelativeError MaximumError

0.088 1.528

0.021 0.204

0.689 7.907

13.9800.599

0.081 0.803

5. CONCLUSIONS

Exponentialfunctionsof theform C I-Ixai havebeenusedto approximatestructuralresponse.Both
i

1-pointand2-pointapproximationshavebeenusedto determineC and{ai}. The1-pointinvolvesmatching
functionandderivativevaluesat thecurrentdesign.The2-pointmethodis basedonminimizingaleast
squaresfunctionby modifiedNewton'smethod.Thebasisfor exponentialapproximationsis from two
sources:oneis from structuraltheory,wherecr= P/Acanbewrittenas_ = PA-1,while theotheris from
economics,whereafunctiong = cxahasanelasticityequalto theexponenta. Therestrictionof exponential
approximationsis xi > 0. An advantage is that the approximating function is v',did for any type of structure
or type of structural response. Further, the exponential approximations when applied to the cost and
constraints of an optimal design problem have the potential for being used in conjunction with geometric
programming which can effectively solve the subproblem.

Results on three out of the four structural problems considered have shown that the exponential
functions have provided excellent approximations, with essentially no error, even for large distances in the
design space. The linear, linear-reciprocal and quadratic polynomial are much inferior.

On one of the problems involving natural frequency of a 3-bar truss, it is observed that the function
is essentially flat or linear. In this case, the 2-point exponential (based on a best-fit) does better than the 1-
point, but the quadratic polynomial is superior, Thus, for linear or nearly linear functions, the linear
approximation is to be preferred. For other cases, the exponential has shown to be a powerful method of
approximation.
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INTRODUCTION

In engineering design practice behavior is usually predicted based on some known nominal

design. However, when the design is fabricated it will differ from the nominal design because of

manufacturing tolerances. In order to generate nominal designs that will still satisfy behavior con-

straints in the presence of manufacturing tolerances, engineers resort to the use of safety factors,

over and above those introduced to account for other uncertainties (e.g. in load conditions, material

properties, analysis modeling). The accurate selection of the values of these manufacturing toler-

ances safety factors is dependent on the capability of the engineer to determine the sensitivity of the

critical constraints to changes in the design variables. This process usually leads to overly

conservative designs.

The task of choosing safety factors is much more difficult in structural synthesis because: 1) it

is not known which constraints will be active at the final design, 2) as the design changes during the

synthesis process the sensitivities of the constraints with respect to the design variables also change,

and 3) the imposition of the safety factors themselves may change the set of critical constraints.

These difficulties can be overcome with the approximation concepts approach to structural synthesis

by buffering the approximate constraints with quantities that are related to the design variable toler-

ances and the accurate sensitivities of the constraints with respect to the design variables. Designs

generated by this approach tend to be feasible but not overly conservative.

Problems:

Design variable tolerances lead to analysis errors.

Choice of accurate safety factors is dependent on engineers intuition.

Difficulties in Structural Synthesis:

• Critical constraints in the final design are not known.

• Sensitivities of constraints with respect to design variables change during syn-

thesis process.

• Safety factors may change the set of critical constraints.

Solution:

Use the approximation concepts approach to structural synthesis with the con-

straints buffered by values that are related to the constraint sensitivities and

design variable tolerances.

Figure 1
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MATHEMATICAL PROBLEM STATEMENT

The structural synthesis problem is stated as: Minimize the weight of a structure (IV) that is a

function of the design variables (Y) subject to m constraints (displacements, stresses, and frequen-

cies) (gj(Y)). The n design variables are member cross sectional dimensions and nonstructural

masses. The design variables are constrained to be in some specified range (Y_ < Yi < YY).

The design variables have tolerances -+-AYi. These tolerances may be a percentage (ki) of the

current design variable values.

Minimize

subject to

w(Y)

gj(Y) < 0

yb < Yi < Y/

j- 1,2, 3, ...m

i- 1,2,3, ...n

with design variable tolerances + AY;

which may be a percentage of the current design variable value:

± AY_ -+ k_Y_

Figure 2
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APPROXIMATION CONCEPTS APPROACH TO

STRUCTURAL SYNTHESIS

In the approximation concepts approach to structural synthesis an approximate optimization

problem is constructed and solved at each design iteration. The use of approximations that better

capture the behavior of the actual problem will, in general lead to faster design convergence. Linear

Taylor Series Approximations were first used to form approximate problems (Ref. 1). It was

observed that displacements and stresses were functions of the reciprocals of the design variables in

statically determinate structures. This led to the useof approximations with respect to the inverse of

the design variables (Ref. 2). The use of a mixture of linear and reciprocal (hybrid) approximations,

based on the sign of the partial derivatives, was found to be a more conservative approximation (Ref.

3) and led to a convex design space (Ref. 4).

More complex and accurate nonlinear approximations, which capture certain explicit nonlin-

earities of the problem, can be constructed if approximations are formed with respect to intermediate

design variables (Ref. 2) such as beam section properties (Ref. 5), and if intermediate response

quantities (Ref. 2) such as member forces for stress constraints (Ref. 6) and modal energies for fre-

quency constraints (Ref. 7) are approximated.

Linear Approximation: _L(y ) = g(yo) + _ agc¢)(y,=_-Ti_-, i- Yo,)

Reciprocal Approximation:

(I)

Hybrid Approximation:

Intermediate Variables:

(Linear Approximation)

For Beam Bending:

e.(v) g(Vo)+ r:,"g"'( ' '/: ,=, ,- o,,-g- _7+-,7, (2)

Mixture of Linear and Reciprocal Approximations based on
agO')

the sign 0[7, (assuming Y+> O)

a_×) X tV_ - x](go)]_;/v(Y) = g(Yo) + _ axi --j,-,

ag(h,b)l_ ,, _.

fi,w(h, b) = g(h o, bo ) + Y _ ltjttz, o; - Ioj]
J

- ,¢,tO')c

Intermediate Response Quantities ,qle(y ) = ,,(r_-1.0 =-7_. - 1.0
0 a

(Forces in Beam Bending)

where M(Y)=Mo(Y)+ 1_ a_O')(Y-.-27-, i-Yo,)
i=l J

(3)

(4)

(5)

(6)

Figure 3
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FIRST ORDER CONSTRAINT BUFFERING

One approach used to buffer the constraints, introduced in Ref. 8, is to add a padding term to

the constraint function that is equal to the sum of the absolute value of the tolerance on each of the

design variables multiplied by the sensitivity of the constraint with respect to the design variable

(Eq. 7). This approach has the advantage that it gives good results when the constraints are nearly

linear in the design variables. The drawback to this approach is that when the constraint function is

nonlinear, due to the use of intermediate design variable or intermediate response quantity concepts,

the padding term is still a linear function of the tolerances on the design variables. This can lead to

designs that are not conservative enough.

Another drawback to this approach is that the first order derivatives of the constraint functions

may contain second order quantifies if intermediate design variables and response quantities are

used. These second order terms cannot be neglected since they can be larger than the first order

terms. Calculation of the second order terms can be quite difficult, since the analytical expression

can be very complex. The finite difference technique can be used to calculate the second order

terms; however the error associated with this technique may become large, especially if the first

order derivatives where generated by finite difference. The second order terms could be approxi-

mated by using an approximate Hessian matrix (see Ref. 9), but there are also errors associated with

this technique.

,_;P(Y) = ,_(Y)+
i-I

A<--
_g(Y)

OY,

" Og(Y)_(P(Y) = g(Yo) + _-, --(Y_ - Yo_) + Ay i

_,_(y) g(yo) + _ y2 Og(Y) "
= (- o,)--_(1/r,- 1/Yo) + Zi=1 t=l

0g(Y)

3<

(7)

(8)

(9)

Figure 4
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BUFFERING OF NONLINEAR CONSTRAINTS

A more accurate buffered constraint, which captures the explicit nonlinearity in high quality

approximations, can be constructed by using the values of the design variables at their upper or

lower tolerance values, depending on the sign of the derivative of the constraint with respect to each

design variable, in the constraint function. For example, in a structure with displacement constraints

the values of the member cross sectional dimensions at their lower tolerances would be used in the

constraint function. The lower tolerance value is used, as opposed to the upper tolerance, because

the lower values lead to larger displacements (the sign of the derivative of the displacement with

respect to the design variable is negative). Since the tolerance is included in the constraint function,

all of the nonlinearity that is captured by the constraint function is also present in the buffered con-

straint. Note that the accurate calculation of the first derivatives of the constraints with respect to the

design variables is the same and as simple as the method that is used for unbuffered constraints. The

only difference is that the value of the design variable is replaced by its upper or lower tolerance
value.

If constraints are formed using intermediate design variables, then the values of the design

variables at their upper or lower tolerance values are used to calculate the buffered value of the inter-

mediate design variables. Note that in some cases, such as frequency constraints, some of the design

variables associated with an intermediate design variable may be at their upper tolerance values

while the others are at their lower tolerance values.

_a(y) = ,_(yB) (10)

where Y_

:

3g (Y)

Y, +AY, if Oy,

_g(Y)

Yi-AY, if _Yi

___ 0

g (y,) + _ ,gg (Y) (y,B _ Yo,)
i= l OYi

< 0

/ y2,0g(Y)[ 1 1 ]g(Y,) + _, _.- o,)--_i y B Yoi

= _(Xa(yt_))

(11)

(12)

(13)

Figure 5
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EXAMPLE

Consider a rectangular cantilevered beam of height h and width b loaded by a moment M at

the tip. If the intermediate response quantity approach is used, then the approximate stress is calcu-

lated using the approximate moment. In statically determinate problems such as this one, this is

trivial since the approximate moment is constant. Hence, the approximate stress is exact.

The approximate stress is calculated using the value of b and h. The buffered approximate

stress is calculated using the buffered values of b and h. Since the stress is greater when the values

of b and h are smaller, the values of b and h at their lower tolerances are used in the buffered con-

straint approximation. Note that the constraint is a nonlinear function of the design variable toler-

ance (Eq. 18). The buffered value of the stress is also exact. Therefore, when the design is

fabricated and the manufacturing tolerances are at their lower values, the stress constraint will not be

violated. Equation 19 is the first order form of the buffered constraint. Although this type of buff-

ered constraint is exact for linear approximations, there is some error when it is used with nonlinear

approximations because the buffering is only a linear function of the design variable tolerances.

6 6/_
_ - ] ;6- (14)

C_ bh 2

B
-_ , 6 B 6fl _g - 1 - (15)

(I a B B 2h (h)

M8 = M = M (16)

b _ = b-Ab , It8 = tt-Ah (17)

6M
6 -- (18)

(b - Ab) (h - Ah) 2

P
6M

bh 2
Ah( -12M

+ bh 3 )
(19)

Figure 6
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Abstract

Paraboloid antenna surfaces suffer performance degradation due to structural deforma-

tion. A first step in the prediction of the performance degradation is to find the best-fit

paraboloid to the deformed surface. This paper examines the question of whether rigid

body translations perpendicular to the axis of the paraboloid should be included in the

search for the best-fit paraboloid. It is shown that if these translations are included the

problem is ill-conditioned, and small structural deformation can result in large transla-

tions of the best-fit paraboloid with respect to the original surface. The magnitude of

these translations then requires nonlinear analysis for finding the best-fit paraboloid. On

the other hand, if these translations are excluded, or if they are limited in magnitude, the

errors with respect to the restricted "not-so-best-fit" paraboloid can be much greater than

the errors with respect to the true best-fit paraboloid.

Introduction

Paraboloid antenna surfaces suffer performance degradation due to structural deforma-

tion. A first step in the prediction of the performance degradation is to find the best-fit

paraboloid to the deformed surface. The process of finding this best-fit paraboloid has

received some attention in the past, (e.g. Refs. 1,2) but there is no clear agreement on

a procedure that should be followed. In particular, questions that arise are whether it is

acceptable to change the focus length in choosing the best-fit paraboloid and which rigid
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body motions should be included in moving from the original paraboloid to the best-fit

one. The present paper attempts to shedsomelight on this secondquestion.

The choiceof rigid body modes to be consideredis associatedwith ill-conditioning of

the numerical processof obtaining the best-fit paraboloid. If z denotes the paraboloid

axis symmetry, then the ill-conditioning is associated with translations in the x and y

directions. Because antenna surfaces are typically shallow paraboloids, finding x and y

translations required to move the original paraboloid to the best-fit one leads to an ill-

conditioned set of equations. It is possible to eliminate these translations by, for example,

setting them to be equal to the corresponding translations at the apex. However, it is not

clear how much is lost in terms of the root mean square (rms) surface error. This paper

shows that not including these translations can indeed result in substantial increase in

rms errors, but that to include them one must resort to complicated and costly nonlinear

calculations. This is demonstrated first by the simpler case of a best-fit parabola.

Best-Fit Parabola

The undeformed shape of the parabola is given as

Yl "- ax2

The distortions in the Xl and Yl directions are given by _ and r/(see Figure 1) so that

161



a point A moves to position A'. The best-fit parabola is given as

y = cx 2 (2a)

c=a+b (2b)

The two coordinate systems shown in Figure 1 have unit vectors 31 and _'1 associated with

the undeformed parabola, and _ and _ associated with the best-fit parabola.

The radius vector R A from the apex of the original parabola to A' is given as

t_-A "- (XA + _);1 nI- (ax2 Jr- 7])3-1 (3)

The closest point to A I on the best-fit parabola is denoted B (Figure 1) and has the

coordinates [xs, (a + b)x 2 fl] in the (x, y) coordinate system. The radius vector from the

origin of the original parabola to fl is given as

"RB "- /?1_1 "4-/72_1 -t- XB-_ "nt- (a -_- b)x2 y (4)

where/31 and/?2 are the coordinates of the origin of the best-fit parabola. Denoting the

angle between the 3:, and x axes as/3a we have

7_ = 7 cos fla - i sin fla (Sa)

._ ---24

22 = z sin/33 + j cos/33 (5b)

Using Eqs. (5) we can obtain from Eqs. (3) and (4) the error V of A' with respect to the

best-fit parabola

(6)
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where (_'A, YA), the coordinates of A' in the best-fit coordinate system are given as

_A = (XA + _) cosfla +(aa:2A + q) sinfl3 -- fl_ cosfl3 -- f12sinfl3

YA = --( xn "3t-_) sin f13 + (ax2a + q) cos/33 + fll sin f13 - f12 cos/33

(7a)

(7b)

w !

The point fl on the best-flt parabola is found by minimizing II/i_B -- /_AII with respect

to X¢_. In the present work this is done with a Newton-Raphson iteration using xA as an

initial guess (XB is the solution to a cubic equation).

The parameters b, ill, f12, f13 are found by minimizing the root-mean-square (rms) dis-

tortion

z,;m.= .. = (8)
h i=1

where -t-h are the limits of the parabola, ci are quadrature weight and xi are points where

the deformed parabola coordinates are given. In this work the minimization was performed

by a conjugate-gradient method using finite-difference derivatives.

Instead of performing this nonlinear analysis it is standard practice to linearize the

problem. First we set cos/33 = 1, sin fla = f13 and neglect higher order terms in Eqs.

(7) (assuming _, rl, fll,fl2,fl3 are small)to get

_ A -- XA q- _ q- aX2Afl3-- fll

-YA-- --XAria -4-aX2A+ 7]-- t32

(9a)

(9b)
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Next weusea linear approximation to the minimum distanceasfollows: We set X B --

XA in Eq. (6) and take only the component of _ normal to the best-fit parabola at

XB --" :CA. This normal _ is given as

- 2(a + b)xA_
n = (10)

V/1 + 4(a + b)2xm 2

Neglecting higher order terms the normal component of v can be written as

un = u. n -- -Uo + f.Ta (11)

where

and

Uo = (q - 2axA_)/?l + 4a2X2A

_T __ [X2A,_2aXA,l, xa + 2a2x3l/v/1 + 4a2x2A

(12)

(13)

The rms error is now defined as

2 1 /hu_dx

To minimize it we differentiate Eq. (14) with respect to ct to obtain

h Ou,_

Using Eq. (11), Eq. (15) becomes

Ao_= f

j = 1, ...,4

(14)

(15)

(16)
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where

A = e:d = c/,(x,):,(xi)
h i=1

(17a)

ff = uogdx = ciuo(xi)t(xi) (17b)
h i=1

The matrix A is almost singular so that small deformations _, 7/ can result in large

values of fll (the x-translation) and/33 (the rotation). We can minimize 2Vrm s with an

additional limitation on the size of ct of the form

c_Tc_ _< _ (18)

and this leads to a system of equations

(A + M)a = f (19)

where/_ is a Lagrange multiplier (chosen to satisfy Eq. (18)) and I the identity matrix.

Best-Fit Paraboloid

The derivations for the paraboloid parallel the derivations for the parabola given in the

previous section.. The undeformed shape of the paraboloid is given as

Z 1 "-- ap 2 (20)

in a coordinate system shown in figure 2. The distortions in the Pl, 01 and Zl directions

are given by _, r/ and 4, respectively, so that point A in Figure 2 moves to position A'.
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The best-fit paraboloid is given as

z -- cp 2 (21a)

c=a+b (21b)

-t
The radius vector R A from the apex of the original paraboloid to A t is given as

_a = [(PA + _)COS Oa -- rl sin t_A]T,

+[(PA + _)sin OA + rl COS Oa] _,+ (ap2a + C)k,

t: tel--" X;71 "_- YA]I -4- ZA (22)

The closest point to A p on the best-fit paraboloid is denoted B (Figure 2) and has the

cylindrical coordinates [fiB, OB, (a + b)fl2B] in the (x, y, z) cordinate system. The radius

vector from the origin of the original paraboloid to B is given as

hB _"/3171 -t- fl251 -_- _3kl -_- PB C08 OB7 -4- PB sin OBj + (a + b) p2B[_ (23)

where now ill, f12 and f13 are the coordinates of the apex of the best-fit paraboloid in

the (xl, Yl, zl) system. The relationship between the unit vectors in the original and

best-fit systems is given as

Z, 7

k,
(24)

where

lo o]0 cos_4 -sinfl4
0 sinfl4 c0s/34

c0s/35 0 sin_5
0 1 0

-sin_5 0 costs
[ cos_6 -sin_6 O]

sin_6 cos136 0
0 0 1

(25)
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and f14, f15 and _6 are rotations around the axes xl, Yl, zl, respectively.

Using Eq. (25) we can obtain from Eq. (22), (23) and (24) the error D of A' with respect

to the best-fit paraboloid.

fJ = [_B - [_A = (PB COS OB -- 5CA)_+ (PB sin OB -- flA)] + (Cp2B-- _A)k (26)

where (:_A, YA, Z'A), the coordinates of A' in the best-fit coordinate system, are given as

_A = T' y 92 (27)
5A ZA

The point B on the best-fit paraboloid is found by minimizing [[ _ I 2 with respect to

PB and OB. Doing so we obtain

0 B -- 0 A _- ¢ (28)

where

tan¢ = f]A c08 0 A -- XA sin 0A
YCACOS OA + flA sin OA

and PB is the solution of the cubic equation

(29)

2c2p_+ p_(1- 2c_A)- (_Aco_o_+ fJA_in o_) = o (30)

which is closest to PA. The parameters b,/31, ...,/36 are found by minimizing the root-

mean-square (rms) distortion

h 2rr

. liiU;m_ - "-_ O.f' pdO '_ Ci p2 (pi , Oi )

0 0 i=l

(31)
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whereh is the limit of p for the paraboloid. As in the case of the parabola the minimization

was performed by a conjugate-gradient method using finite-difference derivatives. As in

the case of the parabola we consider also a linear analysis setting cos/3i = 1, sirtfli = fli

for i = 4, 5, 6. The linear approximation to the minimum distance is obtained by a

similar procedure to the two-dimensional case: We set PB = PA and OB -- OA in Eq.

(26) and take only the component of _ normal to the best-fit paraboloid at fib "- PA and

OB = OA. The normal fi is given by

[¢ - 2cpAcOsOA_- 2CpASinOA_
= (32)

_/1 + 4c2 p2A

Neglecting higher-order terms the normal component of _ can be written as

u, = u.n = -Uo + gtc_ (33)

where

and

e = [A,

and

Uo = (¢ - 2apA_)/V/1 + 4aZp2a (34)

--2apacosOa, --2apa sinOa, 1, pa sinOa (l +2aZ p2A), --pACOSOa (1+2a2 p21)]

/ V/1 + 4a2p_ (35)

ct t-- [b, ill, _2, _3, _4, _5] (36)
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Note that, as expected because of axial symmetry, r] and f16 do not influence the error.

The rms error is again defined as

h 2_r

Prms -- #h 2

o o

and the minimization again leads to a system of linear equations.

(37)

Ao_ = f (38)

where
h 2_r

/2

A= f f fgtpdpda : Eci_i(Pi, Oi)_(pi, Oi) (39a)
0 0 L=I

h 2_r

-
o o

Z CiV0 (/9i' Oi)_(lgi' Oi)

L=I

Results for Best-Fit Parabola

To illustrate the problems associated with finding the vector o_ which defines the best-fit

parabola consider a distortion of the form

2_. (40)= _c(a- _o_-T- )

with 7] = 0. A parabola with a/h = 0.2 corresponding .to focal length over diameter ratio of

0.625 was used. The best-fit parabola was calculated for a very small disturbance _c/h =

0.005. The best-fit parabola corresponding to this distortion was calculated three different

ways:
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(i) By using conjugate gradient optimization procedure to minimize V'2ms based on the

nonlinear expressions in Eqs. (6) and (8). The resulting surface error is denoted PNL.

(ii) By solving the linearized problem Eq. (16). The corresponding linear approximation to

the surface distortion is denoted PL.

(iii) By solving the size-limited problem, Eq. (19) for various values of )t.

The results are summarized in Table 1. The first line shows the results obtained with

conjugate gradient minimization of the nonlinear expression for the error. It is seen that

the rms value of the error can be reduced by a factor of three. However, there is great

amplification of the disturbance with the normalized translation fll/h being equal to

0.1571. The linear analysis based on Eq. (16) yielded similar values for the components

of oz. However, because of the large values of these components the prediction of that

linear analysis was erroneous. The predicted rms value of 4.9 x 10 -4 compares with a

nonlinear value of 6.37 x 10 -a. Thus while the linear analysis predicted a reduction of

the initial rms by a factor of 3 the nonlinear analysis predicted that the best-fit linear

parabola actually increased the error by a factor of three and a half.

The next three lines in Table 1 include size-limited solutions obtained from Eq. (19)

with various values of A. It is seen that as A is increased the size of oz decreases so that

the linear and nonlinear predictions become close. However, this is accompanied with

substantial increase in the best-fit rms error. The last line in the table shows a 3-variable
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solution obtained by setting/31 to the apexx-translation (zerohere). This solution is close

to the large-A solution from Eq. (19).

Table 1 showsthat wehave a dilemma in the construction of a best-fit parabola. Linear

analysis requires that we eliminate one of the variables or restrict the size of the solution.

These limitations, however, substantially increase the error rms of the now 'not-so-best-fit'

parabola, The alternative nonlinear solution is complex and costly.

This type of difficulty is not encountered when the distortion does not require fll and

/3a for its correction. As an example consider a distortion of the form

27rx

= _ sin---_ (41)

The results of the nonlinear and linear solutions are shown in Table 2 for a substantial

value of _s/h = 0.04. It is seen that there is hardly any difference between the linear

and nonlinear solutions.

Results for Best-Fit Paraboloid.

Similar results were obtained for the best-fit paraboloid for a/h = 0.2. For example,

a distortion of the form

= Gsin(rcp/h)sinO (42)

was considered, and the results for _s/h = 0.001 are summarized in Table 3. The first

column shows the results of the nonlinear analysis coupled with the conjugate gradient
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minimization. The rms error is reducedby about a factor of 7, however there is again

amplification of the distortion due to the ill-conditioning of the problem with fl2/h --

0.09. The linear analysis shown in the second column produces very similar solution,

predicting even better reduction in rms (about a factor of 10). However, when the nonlinear

solution is analyzed using the nonlinear analysis we find that the error actually increased

by a factor of 3.

The next three columns in Table 3 show the size-limited solutions based on Eq. (19). It

is seen that, as we put more and more stringent limits on the magnitude of the solution,

the agreement between the linear and nonlinear solution improves. However, much of the

reduction in the error is lost, so that we have a 'not-so-best-fit-paraboloid'. Similar results

are obtained by setting fll and _2 equal to x and y translation of the apex (zero for the

example) and solving a reduced 4-variable problem.

While this dilemma of how to calculate the best-fit-paraboid is difficult, there is a bright

side to it. The linear analysis gives a reasonable idea of the magnitude of error reduction

possible with the best-fit paraboloid.

Concluding Remarks

An investigation of alternatives for calculating the best-fit paraboloid to a deformed

paraboloid surface was investigated. In particular we focused on the ill-conditioning as-
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sociatedwith the translations perpendicular to the axis of the paraboloid. It was shown

that this ill-conditioning results in disturbance amplification so that small deformation

can result in large translations and rotations for the best-fit paraboloid. It wasalso found

that eliminating the two translations or restricting their magnitude may result in large

increasesin rms errors.

The amplification of translations and rotations for the best-fit paraboloid results in

grossly inaccurate prediction by linear analysis of the rms error. However, the linear

analysismay be less inaccurate in predicting the achievablereduction in rms error.
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Table 1: Best-fit parabola with various fitting schemes, (c/h = 0.005, initial error

_'or,,,_/h = 1.75 x 10 -a

Fitting scheme b/h fll/h t_2/h fl3/h PL/h tINLt/h

rms values

4-variable

nonlinear .00104 .1571 .00426 .05854 4.90 x 10 .4

linear O. .1574 O. .05844 4.90X 10 -4 6.37x 10 -3

A = .00001 O. .1238 O. .05844 4.90x 10 -4 3.90x 10 -3

/_ = .0001 0. .0426 0. .0146 8.91 × 10 -4 9.74 x 10 .4

/_ = .0002 0. .0248 0. .00785 9.89x 10 .4 9.95x 10 .4

A = .0005 0. .0113 0. .00267 1.07x 10 .3 1.07x 10 -a

3-variable 0. 0. 0. -.00163 1.13X 10 .3 1.13X 10 .3

Table 2:

8.69 x 103

Best-fit parabola with various fitting schemes, _s/h -- 0.04, Vo,.ms/h --

Fitting scheme b/h /31/h /32/h /33/h v'L/h VNL/h

rms values

nonlinear .0142 0. -.00228 0. 6.02 X 10 -a

linear .0141 0. -.00225 0. 5.69X 10 .3 6.02X 10 .3
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Table 3: Best-fit parabola with various fitting schemes,(s/h = 0.001,

Uo,.,.,,s/h = 4.868 x 10 -4

initial error

Fitting

scheme

b/h

ill/h

fl2/h

Z3/h

Z4/h

 5/h

YL/h

VNL/h

6-variable 4-variable

nonlinear linear

A=O A=5xlO-6A=2x 10 -SA=5x 10 .5

2.33 x 10 -40. O. O. O. O.

O. O. O. O. O. O.

-0.09055 -0.09055 -0.06281 -0.03280 -0.01686 O.

1.41 x 10 -30. O. O. O. O.

-0.03366 -0.03366 -0.02313 -0.01174 0.00569 7.12× 10 -4

O. O. O. O. O. O.

5.19x10 -5 1.12x 10 -4 2.14x 10 -4 2.70x 10 -4 3.29x 10 -4

6.91x10 -5 1.47x10 -3 7.05x10 -4 2.79x10 -4 2.73x10 -4 3.29x10 -4
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Abstract

This paper presents approaches to the combined design of structures and controllers for achieving optimal
maneuverability. A maneuverability index which directly reflects the minimum time required to perform a given set of
maneuvers is introduced. By designing the flexible appendages, the maneuver time of the spacecraft is minimized under
the constraints of structural properties, and of the post maneuver spiliover being within a specified bound. The spillover
reduction is achieved by making use of an appropriate reduced order model. The distributed parameter design problem is

approached using assumed shape functions, and finite element analysis with dynamic reduction. Solution procedures have
been investigated. Approximate design methods have been developed to overcome the computational difficulties. Some
new constraints on the modal frequencies of the spacecraft are introduced in the original optimization problem to facilitate
the solution process. It is shown that the global optimal design may be obtained by tuning the natural frequencies to
satisfy specific constraints. We quantify the difference between a lower bound to the solution for maneuver time
associated with the original problem and the estimate obtained from the modified problem, for a specified application
requirement. Numerical examples are presented to demonstrate the capability of this approach.

I. Introduction

Large space structures such as antennas or space stations will be very flexible, not only because of the high cost of
transportation of structures from Earth to space, but also because they will be constructed or deployed in orbit and will
not need to withstand large launching and gravity loads. However, when a space structure is very flexible, its active
control system can excite and otherwise significantly interact with its flexible modes. Thus, the idea arises of achieving
the best flexible mode suppression for attitude maneuver of spacecraft. The control problem of time-optimal, rest to rest,
slewing of a flexible spacecraft through a large angle has been investigated [1]. In that work, a specific spacecraft is
modelled using a reduced order model, and the time-optimal control history of this modelled system is deriv_. In some
time critical applications, it is required that the maneuver be performed as rapidly as possible. As a consequence,
structural optimization is considered so as to further minimize the maneuver time. The whole design process, the idea of
combined design of controllers and structures for optimal maneuverability, is considered in this work.

Traditionally, the overall design problem for actively controlled space structures is treated via an iterative two-part
scheme. Redesign of the structure including sensor and actuator placement is performed in one stage, and then the control
law is modified for the resulting system to complete an iteration cycle. Generally different design objectives apply in the
separate steps. More recently, the need to integrate the design of a structure and its control system has been recognized.
An integrated approach is justified simply on the basis that structural and control purposes are substantially coupled.
Bodden and Junkins [2] presented a method for eigenvalue optimization with sequential or simultaneous design of
structure and control. Khot, Oz, Venkayya, and Eastep [3-5] considered structural optimization, including constraints on
control gain norm and transient behavior of the control system, based on a linear-quadratic model of the controller. Hale,
Lisowski, and Dahl's [6,7] treatment of the problem of simultaneous structure and control design for a maneuvering
spacecraft resulted in a linear-quadratic optimization problem. Bendsoe, Olhoff, and Taylor [8] presented an algorithm for
integrated design of the structure and its control system which includes a constraint to limit the control spillover into the
unmodelled modes. Lust and Schmit [9] presented a control-augmented structural synthesis methodology in which the
structural member sizes and active control system feedback gains are treated simultaneously as independent design

variables. Onoda and Haflka [10] considered the optimization of the total cost of the structure and control system subject
to constraints on the magnitude of the response to a given disturbance involving both rigid-body and elastic modes. Lim
and Junkins [11] presented an idea for optimizing the robustness of structures and structural controllers, using homotopy
and sequential linear programming algorithms. Khot [12] presented algorithms for design of minimum weight structures
with the goal of improving system dynamics by use of a closed-loop control system.

Most of the developments on simultaneous design of structures and controllers reported in the literature use simple
linear feedback control laws and quadratic performance indices. Practical constraints such as limitation on the amplitude

of the control effort generally are not taken into account. The use of such relatively narrow forms of problem statements
may have serious implications in terms of the usefulness of the results. It is understood, for example, that the use of

performance indices expressed as linear/quadratic functionals is generally inappropriate unless loop transfer recovery
techniques [13-16] are incorporated into the formulation. Furthermore, the constraints usually used in literature are on
the closed-loop eigenvalue distribution and structural frequencies, These constraints are not as direct to the application
problem as constraints on rise time, maximal displacement, or maximal stress. The consideration of performance
degradation of the optimal system coming from the control and observer spillover is also generally not included.
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Inthepresentwork,weexaminetheproblemoffullycoupleddesignforaspacearaftanditsassociatedcontrol.
Thedesignofthestructuralsystemandcontrolistobeintegratedsoas to optimize with respect to a single cost
function. The objective is chosen to reflect the maneuverability of this structure/control system, i.e. the time required to
perform a given maneuver or set of maneuvers. Various forms of Mission Specification can be reflected in the definition
of the performance index. Ours includes criteria related to sets of maneuvers with specified probability of occurrence.
This performance index is generally more meaningful than the usual LQG index with minimum weight. The 'minimum
time' objective is appropriate for application in slewing or other retargeting maneuvers. Furthermore, the problem is
formulated in a way to accommodate in explicit form of various practical constraints, such as limits on control action and
performance error (control spillover). Also, the formulation is consistent with a nonlinear bang-bang form of optimal
control design.

The spacecraft is modeled as a linear, elastic, undamped, nongyroscopic system. The necessary-and-sufficient
condition for the time-optimal rest-to-rest control problem can be considered as a mapping from the structural dynamic
properties to the optimal maneuver time. The maneuverability is optimized by updating design parameters.
Characteristics of the problem and problem solving procedures have been investigated. Approximate design methods
have been developed to overcome the computational difficulties. Numerical examples are presented to demonstrate the
capability of those approaches.

II. Combined Design of Structures/Controllers -
Problem Formulation

Consider the linearized rotational dynamics of a flexible spacecraft where control inputs are used to actively control
the rigid body mode and flexible modes. The spacecraft is modeled as a linear, elastic, undamped, nongyroscopic system.
There is a rigid central body, as shown in Figure 1, to which N (N > 2) identical flexible appendages are attached with
uniform spacing between them. Along the appendages, there might be some kinds of distributed or concentrated payload
masses for practical usage. The spacecraft may be very large and flexible. The spacecraft is to be controlled by a single
torque actuator located on the central body and m torquers located at identical locations on each of the N appendages. The
amplitude of the torque applied by each torquer is limited. The objective of the control design is to time-optimally
slewing the spacecraft through a specified angle 0, and achieve flexible mode suppression at the end of the maneuver.

Assume that the appendage displacements, slopes and central body rotation rates remain small and the appendages are
inextensible. The appendage displacements are restricted to a plane orthogonal to the central body's axis of rotation.

appendage

central
m torquers

hub

Lump mass

cells (payloads) (payload)
sh

n of the N

Identical appendages

Figure 1

The design parameters of the appendages can be the cross section, stiffness or density of the material, layouts of
the composite material or the location of torquer actuators along the appendage. Let the design parameter vector be

Jv
E R , implying that the structural dynamics properties are implicit functions of _.

Maneuverability Index

The maneuverability, formulated as a maneuverability index, reflects the cost required to perform a given maneuver
or set of maneuvers. The mission profile is specified by giving the probability density function p(0) of the required
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maneuveramplitude O. Let tf (0) be the optimal maneuver time for maneuver O, and tf (0) is a function of the

structural design parameter vector _. Therefore the maneuverability index is also a function of _. We define the
maneuverability index as

+_

o(0)
-= (2._)

For example, let p(O) = 6(0-0*) then I.t*(_) = tf (0"). In other words, the maneuverability index represents the expected

value of the optimal maneuver time for a given mission profile. The structural design problem is then to optimize
}.t*(_) with respect to _.

Optimal Design Problems

Assume that the structural design parameter g is restricted to belong to a compact set E, which represents
feasible designs. Assume that the design of the appendages will not change the characteristic of the torquers along the
appendages. In other words, the amplitude limits of the torquers remain the same for all values of the design parameters.
Therefore, we can formulate the optimal combined structuredcontml design problem as :

la = min p.*(_)
E

where F, is the space of structural design variables
subject to two sets of constraints :

I. a. Material resource constraint,
b. Geometric configuration constraints :

such as the max. and min. thickness limits of cross section,
c. Dynamic response constraints :

such as the max. stress and displacement limits,
and, II. The post-maneuver control spillover is within a specified bound. (2.2)

Constraint II takes into account the performance degradation associated with the unmodelled dynamics.

We approach the distributed parameter design of the cross section of the appendage using assumed shape functions.
For example, let the design parameter of the cross section be the thickness distribution. We assume that the thickness
function, h(x) (x is the location along the appendage) is represented via a linear combination of a set of assumed shape
functions. This approach uses the same idea as design variable linkage [17],

The distributed infinite degree-of-freedom system is approximated with finite elements. We discretize the
spacecraft into a finite number of elements and then perform modal analysis. There are two kinds of mathematical
models for design and analysis. Let subscript E indicate a quantity derived based on the control evaluation model. The

number of modes in this model is the number of degrees of freedom in the finite element analysis (let it be n in this
paper). Assuming this model to represent the exact dynamic system, we can evaluate the performance of the controlled
system on it. Let subscript Rindicate a quantity derived based on the control design model. The control design model is

the model on which we obtain the optimal-time maneuver law. We assume there are r (r << n) vibrational modes
retained in this model. The natural frequency and mode shape of the modes in the control design model can be easily
obtained from the control evaluation with the dynamic reduction method.

Results of the Linear Time-Optimal Control Problems

Results presented in this section were obtained in the recent paper [1]. The optimal control characterized here is
based on a control design model, or so called reduced order model, which has one rigid body mode and r undamped flexible
modes. There are 2*(r+l) state variables in this system. The problem of time-optimal rest-to-rest slewing maneuver can
be formulated as

Problem M(0)R :

rain tf(0) (2.3)

Subject to :
=A x(t)+Bu(t)

luj(t)l _<Uj ;j = O, 1 ..... m
where u0 is related to the control input at the central rigid body and u1, u2 .... um are related to the m
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torquer actuators along the appendages. Uj ; j = 0, 1..... m are the corresponding amplitude limits.

x(0) = (0, 0 ..... 0) t , where ( )t denotes transpose.

x(tf) = (0, 0 ..... 0) t

A = Block diag[Ai], B = Block col [Bi], where

Bi=

I°°l-toi 0
9

, i=0,

0)i is the natural frequency, i = 1, 2..... r

F;o°;]
Let the solution for problem M(0)Rbe tf (0).

i = 1, 2 ..... r (2.4)

lit

Theorem 1.1. Let tf be the optimal maneuver time. For all 0, Problem M(0)RhaS a unique solution tf

Theorem 1.2. For a given 0, the optimal control law is of bang-bang type, and is symmetric around tf /2, i.e.

u(tf/2- l)" =- u(tf/2+ t)*, 0 _ t _<tf /2.
Reference [1] treats the general multiple control case, where there are m+ 1 control inputs. However, for simplicity,
herein we assume _at only one control input is used to control the maneuver, that is, the scalar control case. This
assumption means that the N torque actuators on the appendages and the actuator on the rigid central body taken together
represent one control input.

Theorem 1.3. Assume _ere are k switching times between 0 and tf /2, and let them be ti , i = 1,2.... k. Let J* be

(pOO, pl O, O, rthe total rotational moment of the spacecraft, and 0 ..... P O, O) be the costate variable at mid-maneuver
time. Then the optimal maneuver time and the switching times satisfy as necessary and sufficient conditions, the
following system of nonlinear algebraic equations :

- + 2(t__l) "- ... + 2(- 1)k(tt) 2= OJ *[Uo,(t_)2 2(tk)z 2 (2.5)

cos(c0it:/2) - 2cos(o)it k) + 2cos(o), t__l)-.. "+ 2( - 1)kcos(c0itl) + ( - 1)k+1 = 0
i=1,2 .... r

UotI/2 Uosin(toit;/2 ) ...... Uosin(to t;/2 )- P_ - 1
i 1 0

)i sin(t01tk) ...... sin(to'tk) P =
" 0

sin ((o 1ix) ...... sin (to r tl) . _opo j 0

and two inequality equations :

tf /2>tk> tk. 1>...>t2>t1>O
r

o i iSin_v t)_:OPot + Po
i =I

whereO _<l _<tf /2 t<>t i i=1,2 .... k

(2.6)

(2.7)

(2.8)

To solve for the optimal control history, we need first assume the number of switching times, say k, then try to find the

solutions { tj, j = 1, 2.... k } and { PJ0, i = 0, 1, 2.... r } for (2.5)-(2.7). If (2.5)-(2.7) really admit solutions and

they satisfy (2.8) as well, by uniqueness of the solution of the optimal control problem, we have the unique solution.
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We have found that, in general, k is always equal to r. Only when { o3i, i = 1, 2 .... r } satisfy some special conditions,

k is less than r. For the case where k is equal to r, Theorem 1.3 can be simplified by omitting (2.7).

Reduced Order Model

We now consider how many flexible modes should be retained in the reduced order model. The question is
answered by analyzing the degradation in the performance of the designed system on the control evaluation model. This
performance degradation is associated with 'unmodelled dynamics' of the uncontrolled residual modes in the control
evaluation model (from r+l-th term to n-th term). The effects, therefore, result in post maneuver free vibration of the
system, due to control spillover. We need to make sure these vibrations have amplitudes within a specified performance
error bound during the optimization.

There are two ways to quantify the performance degradation : (i). the residual or spillover energy Er(t), and (ii).

the pointing error of the rigid central body after completion of the maneuver 0e(t) (where t _>tf/2). From the recent

investigation on these [1], the latter is the better one because the maximum pointing error continues to decrease as we
suppress additional modes at the final time, while the spillover energy does not necessarily decrease. Also [1] gives three

closed form expressions for the upper bound 10 (t)l, based on the control evaluation model. Among them, the most

useful according to our experience is
n

I°,{' -<={ + Z , '>- ,
i =r+l

We use this upper bound to determine the size of the control design model in order to obtain a prespecified post-maneuver
pointing accuracy of the rigid central body.

Characteristics of the Optimal Design Problem

Theorem 2.

Suppose the number of flexible modes retained in the model is fixed. The optimal maneuver time solved from the (2.5)-
(2.8) is a continuous function of the structural design variables, _.

Corollary 1. The objective function, _t(_), is a continuous function of _.
Corollary 2. There exists a solution to the optimal design problem (2.2).

We have observed that the objective function is always a differentiable function of the structural design variables, _.
Consider the generic case where k is equal to r. The optimal maneuver time can be obtained from (2.5)-(2.6). Actually
(2.5)-(2.6) represent a system of implicit equations of the form •

F (tf , t i , co, 13, J*) = 0. (2.10)

The gradient of the optimal maneuver time with respect to structural parameters can be obtained using the Implicit

Function Theorem as follows : Let x=(tf , ti) and y=(o_, _, J*)

Theorem 3. (Implicit Function Theorem)

Suppose (x0, Y0) is such that F(x0, Y0) = 0 and F(x0, Y0) e C k , and the Jacobian matrix [_F/_x] is nonsingular

(regular) at (x0, Y0). Then there exist a neighborhood of Y0, say N(y0), and a mapping G • N(y0) _ R n such that

x0= G(y0) and G(y0) e C k, and F(G(y), y) = 0 on N(y). Moreover, we have

[3G/'dy]t Iy0= - [bF/3x]-q x0 [3F/_y]_ x0, y0 (2.11)

By the Chain Rule, we can obtain the gradient of the objective function with respect to the design parameters. A
candidate optimal design must satisfy the Kurash-Kuhn-Tucker necessary conditions [ 18]. We use mathematical
programming to find it.

From (2.10), tf is an implicit function of (o_, 13, J*). Furthermore, for the generic case where k is equal to r, tf

actually is a function of o3 and J* only. We show the behavior of tf (o3, J*) for the simplest case where there is only

one flexible mode in Figures 2 and 3.
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We have found the following results : Assume a spacecraft has only one flexible mode.

(i). For a spacecarft with very small col (usually a very flexible spacecarft), tf is quite large. On the other hand, for a

spacecraft with large coI (as shown in the Figure 2, greater than 2.0), tf is almost the same as that of the equivalent

rigid spacecraft.

(ii). For a spacecraft with 0J*/U 0 > 120.0 (the torquer limit is very small or the maneuver angle is very large), tf is
almost the same as that of the equivalent rigid spacecraft.
Of course, a typical spacecraft has more than one flexible mode, and we can not say much about it. However, Figure 2
and 3 provide important information. If the spacecraft is very flexible or the torquer limit is very large (usually this
implies very large maneuver speed), the result of the optimal design can provide substantial improvement.

Problem Solving Algorithm

The control design model is chosen according to the analysis of control spillover. In order to take advantage of
Theorem 2, we assume that the control design model is fixed during the optimization and formulate the optimization
procedure as

PI:
Begin with a reasonable baseline design of the spacecraft.
Step 0 : Set up the reduced model by (2.9). (Set the value of r)
Step 1 :
Step 2 :
Step 3 :
Step 4 :

Step 5 :
Step 6 :
Step 7 :
Step 8 :

Initialize the design variables.
Get the cross section of the appendage for the current value of the design variables.
Finite Element Analysis.
Calculate the natural frequencies of the modes in the reduced model by the Dynamic Reduction
Method.

Solve the time-optimal control problem to obtain the optimal maneuver time.
Find the next values of the design variables by the Nonlinear Programming.
If the result is convergent, Step 8. Otherwise, go to Step 2.
If the spillover constraint (ii of (2.2)) is satisfied, then Stop. Otherwise, Step 0.

Although the algorithim P1 is able to solve the optimal structural design problem (2.2), unfortunately, in our
experience, there exist a lot of numerical difficulties associated with it :
i). To solve the time-optimal control problem, we need to know the number of switching times.
ii). Actually the set of nonlinear equations (2.5-2.7) admit many solutions, of which only one satisfies the

inequality conditions (2.8). Thus, even though we have a good nonlinear equation solver, it would not be able to
guarantee to find the solution we want.

OF FCCR QUALITY
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Given all the difficulties above, it seems a formidable task to solve the optimal design problem by P1 without any

simplfication, especially if one expects to find the global optimal design. Therefore, we introduce approximate design
methods as described in the next section.

lIl. Approximate Design Method

The fundamental idea of this solution procedure is to formulate an approximate design problem without violating
any constraint of the original problem. The solution of the approximate design problem is a 'near-optimal design' in the
sense that there is little difference of objective function between the two solutions. We need to quantify the difference
without solving the original problem and make it as small as possible. However, there is a trade-off between accuracy
and efforts for solving problems. Thus an important capability of the approximation algorithm is that we can adaptively
upgrade the approximation procedure to obtain a reasonable result according to the specific application requirement.
Since design models can not exactUy represent the real system, it is unreasonable to concern oneself so much about a
relatively small improvement of accuracy of the solution based on a design model. In this section we introduce two
approximate design methods : the Adaptive Frequency Tuning method, and the Minorant method. The former one is
suitable for the single maneuver case; the latter one requires more computation work but is suitable for the
multimaneuver case.

Frequency Tuning Approach

There are two basic assumptions :

Assumption 1. : The natural frequencies of the modes retained in the reduced order model can be freely assigned by
adjusting the values of the design variables.
Assumption 2. : During the design iteration, the mass distribution of the appendage is taken to be independent of
the stiffness distribution, i.e., the total rotational moment of the spacecraft, J*, does not change when the
stiffness distribution is modified.

Considering (2.5, 2.6), if for a spacecraft the natural frequencies of all modes in the reduced order model happen to
satisfy :

coi • tf =Ji-4n , i=1,2 ...... r (3.1)

where tf is the maneuver time and Ji is some integer multiplier,

then, the solution in terms of switching times and the optimal maneuver time satisfy :

k = 0, and tf*= 2,_ */J0 (3.2)

It also satisfies the inequality condition (2.8). Thus we solve the time-optimal control problem for {COi, i = 1,2 .... r

satisfying (3.1) }. Moreover, (3.2) imply that there is no switch of the control history between 0 and tf /2, and only one
switch at the mid-maneuver. This means that all flexible modes in the reduced model are dead beat at the end of maneuver

by the same control which maneuvers a rigid body of the same value of total rotational moment J*. We have the new
optimization problem :

,/A"7,
P2 rain tf = 2"_vJ*//0

E

subject to :

the constraints I and II of (2.2), and (3.1) (3.3)

Proposition : Under the Assumptions 1 and 2 above, the solution of P2 solves our original problem, (2.2), and it is
a global optimum.

The rigid-body control strategy is the simplest to implement, and we don't need to solve any nonlinear equations
(2.5-2.7). Furthermore the optimal design of appendage which satisfies (3.1) may be very flexible (in the sense that
natural frequencies of the f'trst few flexible modes are very small), and very light (in the sense that J* is small). This idea
for design appears to be original.
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Adaptive Upgrade Algorithm

Unfortunately, Assumption 2 above is not always satisfied in general applications. For example, in designing an
appendage of rectangular cross section with high density material, the stiffness is highly coupled with the design of mass

distribution. Actually, P2 implicitly assumes that the global optimal design of the appendages is such that the time-

optimal control is the same as the rigid-body control strategy. We restrict ourselves to solve the original problem in a

subspace of the feasible design variable space. Therefore, the result of P2 in general does not apply and needs to be

modified or upgraded.

We f'wst quantify the index of improvement in approximation as the difference of objective function between the

exact optimal design (the solution of original problem) and the solution of approximate design problems. Let tf be the

maneuver time of the exact optimal design, which is equal to the minimum of tf over the entire feasible design space.

we note that _ is equal to fp (0 i ) • tfl0i) d0i. Let tf a ,_a be the approximated solution of tf and _t respectively.Also

Then we introduce : Index of approximation : T_0 = [ tf a- tf I or 113.a- _t I (3.4)

An approximated solution is better if the index of approximation is smaller. However, this doesn't mean the two designs
are close to each other. For example, they may be substatially different in shape. In order to avoid difficulties in

computing tf, we modify (3.4) : E1 = [ tf a- Lb( tf) J or [kta- Lb(_t) J,

where Lb(o) is a lower bound of °, and it is very easy to compute. (3.5)

Also, we have Lb(kt) = [P (0 i ) Lb( tf(0i)) d0i (3.6)

There are two ways to define such a lower bound •
(i). the maneuver time for a rigid spacecraft with the least fesible total rotational moment J_*:

Lb1(tf) = 2,_F_*/U o (3.7)

It is usually unreasonable to define the lower bound in this way because (3.7) is very conservative. The appendage with
the least total rotational moment is usually too slender, too flexible, and likely requires a long maneuver lime.
(ii). the optimal maneuver time of the optimal design which is based on a reduced model with only one flexible mode.

Let the superscript 1 of tf indicate that the value is based on a reduced model with only one flexible mode. Thus

z:tz( t-f] tf 1 "1= = minimum of tf over the entire feasible design space. (3.8)

Since we need more maneuver time for the reduced model with more flexible modes, we know tf 1 is a lower

bound of the maneuver time for the design problem of any reduced order model. We need some computation effort to
calculate tfl; however, the calculation is not very difficult. It is more reasonable to define the lower bound of the

maneuver time to be tf I.

We propose the modified approximate problem _a3 according to the following facts •

Fact 1 • For a specified reduced order model with r flexible modes, we can divide the feasible design space into"
DO : [ _ : the time-optimal control history of this design admits only one switch at mid-maneuver, without any

switch in (0, tf*/2 )},
D1 ' { _ : the time-optimal control history of this design admits at most one switch in (0, tf*/2 },

D 2 " { _ • the time-optimal control of this design admits at most two switches in (0, tf*/2 )},

o,oo ..... ,.

and D0 _ D1 _ D2 C. D3 _ ............. (3.9)

Fact 2 : tf* over Dr > tf* over Dr+l (3.10)

Fact 3 : the solution of (2.2) is the tf* over Dr for some r _>0.

Actually, the solution of P2 is nothing but tfover D 0. Similarly, P3 is the problem of solving for tfover D r ,

r >_ 1, adaptively upgrading with respect to the index of improvement, and with a stopping criterion based on sufficiently
small change of improvement. We can eventually obtain the exact global optimal design if the upgrade goes on.

However, we have restricted ourselves to solveing for tfover D. r < 2.
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The Minorant Design Method

P2 and _3 are not suitable for the general multiple maneuver case because it is difficult to find coi , i = 1,2 .... r

which satisfy (3.1) for many different maneuvers, {0i}. In this section we discuss an algorithm, the minorant method,

which is more difficult to implement, but, suitable for the multiple maneuver case. While solving the time optimal

control problem, we find that for any design of spacecraft, t? r+l > t? r; however, the difference becames smaller and

smaller as r increases. From our numerical studies, it is observed that the maneuverability is most influenced by the
total rotational moment J*, and then from the few lowest flexible modes. An appendage with smaller total rotational
moment or with more rigidity, in the sense that the natural frequencies of the lowest few flexible modes are large tends to

be very maneuverable.

P4 is based on the following assumption and fact,

Assumption : For any fesible design of the spacecraft _ e E, we have I t?(_) i+2- tf*(_) i+/ I <- [ tf*(_) i+l-

tf (_)i1 , i _>0, where the superscript i indicate that the quantity is obtained based on a reduced model with i flexible

modes.

Fact 4 : ] tf i+2 - tf i+1 I < I tf i+1 - tf i I , i >>_O, and ) tf i- tf r I --->0 as r and i are sufficiently large.

[iti+2 _ It i+1 I < I It i+1_ Iti I , i > 0, and I It i. t3, r I --> 0 as r and i are sufficiently large.Furthermore,

P4:

Step 1 :

Step 2 :

Let i = 0, and Solve It/by P1.

Obtain the index of improvement E. If there is no relative change of improvement, stop.

Otherwise, i = i+l. Go to Step 1.

The exact optimal design can be obtained for i = r. However, we do not go beyond i > 2. The capability of P4 will be

investigated later with numerical examples.

IV Numerical Examples

In our examples, we consider designing appendages by adjusting the cross section. We use practical examples
with realistic scale and material. Furthermore, we try to investigate the design of large flexible space structures, such as
huge antenna or space stations.

In what follows, we perform the modal analysis with the finite element method, and model the flexible spacecraft
with one rigid body mode and twenty flexible modes. There are r flexible modes, obtained by the dynamic reduction
method, retained in the reduced order model for control design. The reduced order model is specified according to the post-
maneuver spiUover constraint. In the examples, we specify the maximum angular deviation of the central rigid body post
maneuver as 0.05 deg. The appendages are I-beams (as shown in Figure 4). Our goal is to obtain the optimal flange
depth dislribution of the appendages, and assume the width of the web, and thickness of the web and flange to be
constant. The flange depth is symmetric about a central line passing through the cross section. We use two spline
polynomials as the assumed shape functions to describe the half flange depth :

hl (X ):C 1 + (c 2/'L )x + (c 3/L ) 2x 2+ (£4/L )3x3 ' O <X <L /2

h2(x ) =hl(L/2)+ hI '(L 12)(x - L/2) + (cs/L)2(x -L/2) 2 + (c6]L)3(x -L/2) 3 ,L/2 _<x <L

where c i, i = 1, 2 .... 6 are design variables. (4.1)

We note that all design variables c i , i = 1,2 .... 6 are almost of the same order, and h(x) and dh(x)/dx are continuous at x

= L/2.

We consider a spacecraft with two identical flexible appendages. For simplicity, we assume the appendages are
made of a single uniform material.
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We begin solving _e problem by finding a reasonable number of modes in the reduced order model. We use a

reasonable baseline design with flange equal 4.00 cm. As shown in Table 1, we note that it is appropriate to retain three
flexible modes for a postmaneuver maximum angular deviation to be guaranteed less than 0.05 deg.

Number of modes

retained in the model

Max. angle deviation

post maneuver (deg)

0 1 2 3 4 5 6 7

1,495 0.082 0.0113 2.6e-3 8.3e-4 3.2e-4 1.5e-4

Table 1,

7.1e-5

Appendage material density, 9

Appendage Material Elasticity, E

Radius of the rigid central body, R

Mass of the rigid central body

Length of one appendage, L

Maximum torque available, U0

Width of the web, b

Thickness of the web, tl

Thickness of the flange, t2

Distributed pay load mass, dm

Concentrated pay load mass (at x = L), M

The resource constraint of two appendages

The minimal flange depth
The maximal flange depth

Spacecrafl D_ta
3

1880.00 kg/m

2.76E11 N/m 2

12.00 m

4500.00 kg
50.00 m
3.0 E4 N-m

5.00 cm

1.75 cm

0.75 cm

9.00 kg/m
None

450.0 kg
2.00 cm

12.00 cm

Case 1 : Single maneuver case

Command slew angle, 0
*3

Thus the exact solution is tf, which is equal to tf
Result :

90.00 deg

over the entire feasible design space.

LbZ( _ *(a). tf) = 2 *_0 = 21.9814 sec, but tf 3 of this design is 24.6213 sec.

(b). Lb2(tf) = tf 1 = 22.3126 sec, and t; 3 of this design is 22.41457 sec. The switching times between 0 and tf .3

of the time-optimal control history are 1.5547E-8, 0.21945, 0.48124 sec (one switching time is almost zero).

(c). From P2 : tf over domain D 0 is 22.3218 sec. Let it be tf a.

] tf a- L_2( tf)l = 9.2E-3. We can accept this design as the solution (as shown in Fig. 5).

Properties of this optimal design of Case 1 :
Structural mass of two appendages
Total pay load mass along the appendages

379.687 kg
900.00 kg
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Total mass of the spacecraft 5779.687 kg

Total rotational moment 2375330.68 kg-m 2

Natural frequency _i, i = 1, 2 ..... 4 0.5642, 1.6942, 4.4738, 8.9745 (rad/sec)

The max. angle deviation from the uncontrolled modes 0.00908 deg
,

Number of switches between 0 and tf /2 of the time-optimal control history : None

Case 2 : General Multiple Maneuvers

The set of maneuvers are { 0i } -- {9, 15, 30, 45, 60, 90 (deg) }, and assume that they occur at the same frequency.

Thus the objective function (maneuverability index) is
6

1
p.(_) = -g _ tf* (O i )

i =t (4.3)

The solution 12 equals It* 3 over the entire feasible design space.

Result :

(a). Lbl(It) = 2q_ *£/0 = 13.1753 sec.

(b). Lb2( it } = 1.1.1= 15.0436 sec, and It* 3 for this design is 15.30617 sec.

As P4 : if we let Ita = 15.30617, we have t_t a- Lbz( _)1 = 0.26257, as 1.7454 %.

(c). 12 2 is 14.8580 sec, and 12" 3 for this design is 14.96326 sec.

As P4 : if we let 12a 14.96326, we have 112a. b= L 2( 12)[ = 0.06526, as 0,4392 %. We accept it as the

solution (as shown in Fig. 5).

We investigate the exact solution by P1 and obtain 13.3 is 14.9455 sec.d).

Properties of this optimal design of Case 2 :

Structural mass of two appendages

Total pay load mass along the appendages

Total mass of the spacecraft

Total rotational moment

Natural frequency coi , i = 1, 2..... 4

425.075 kg

900.00 kg

5825.075 kg

2379168.55 kg-m 2

0.8460, 2.0276, 5.5051, 10.6193 (rad/sec)

The max. angle deviation from the uncontrolled modes 0.02436 deg
,

Number of switches between 0 and tf /2 of the time-optimal control history : Three

V. Conclusion and Future Work

The problem of combined design of structures and controls for optimal maneuverability of an elastic spacecraft has

been considered. The main results of the present work are

i). The problem formulation is consistent with bang-bang forms of time optimal controls.

ii). The performance degradation constraint is considered in the design problem.

iii). The optimal design problem is well defined. There always exists a solution.

iv). The optimization is done by mathematical programming.

v). The gradient of the objective function is computed using the Implicit Function Theorem.

vi). Efficient and practical approximate methods have been developed.

Our experience with various numerical examples leads to the following assertions :

i). The best structural designs often are those for which the designs of mass distribution and stiffness distribution have

very little coupling.
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ii). The benefit of multiple controls is not apparent, since we can use scalar control to achieve good results.

Since spacecraft structure is modelled to be linear, with small displacement and inextensible deformation, the

performace for a realistic system which violates these assumptions is worth investigating. The constraints of structural

dynamic response, such as maximal displacement and stress, should be considered in the examples as well. Those topics

are indicated for future study.
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GROUND TEST PROGRAM FOR NEW ATLAS PAYLOAD FAIRINGS

Introduction

An extensive ground test program is currently being undertaken by General Dynamics/Space
Systems Division to verify the design of the metal payload fairings for the new family of Atlas
launch vehicles, the first of which will be launched this summer. Two new designs, an 11-foot and
a 14-foot diameter version of the payload fairings (see Figure 1), are now available to mission
planners seeking to accommodate the widest variety of mission requirements. While the 14-foot
diameter version was developed for the commercial Atlas I program, and the 11-foot diameter
fairing was developed for the U.S. Air Force Atlas II vehicle, once both production lines are at full
capacity, the selection of a fairing will be dictated by the size of the satellite payload. These new
fairing designs replace the 10-foot diameter, honeycomb fiberglass payload fairings which were
flown on previous Atlas/Centaur launch vehicles. The new metal fairings feature a larger payload
envelope, greater ease of manufacturing and modification, have more consistent quality control
properties, provide better EMI shielding for the satellite payload, and do so at costs and weights
comparable to the old fiberglass fairing.

Both the 11-foot and 14-foot diameter designs are of aluminum skin, frame, and stringer
construction and are built at the General Dynamics Services Company plant in Harlingen, Texas.
The main structural purposes of the payload fairing are to protect the satellite payload during the
ascent phase and to provide an aerodynamic forward surface for the launch vehicle. After the

vehicle has cleared the atmosphere, the payload fairing is no longer required, and it is jettisoned
both to save weight and to allow for the separation of the Centaur upper stage and the spacecraft.
Both the 11-foot and 14-foot designs use a method of separation similar to that originally used for
the 10-foot fiberglass fairing. At the moment of jettison, which occurs about 3 1/2 minutes after

STATION

(INCHES)

500 .....................................................................................................

400.o

3 0 0--.
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SPLIT ........................................................

353"

0
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120" BARREL

14-FOOT DIAMETER 11-FOOT DIAMETER

PAYLOAD FAIRING PAYLOAD FAIRING

(ATLAS I) (ATLAS II)

Figure 1. Atlas 11-Foot and 14-Foot Diameter Payload Fairings.
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liftoff, explosiveboltsfire whichallow thetwo 180-degreehalvesof thefairing to begin
separation.Springloadedactuatorsatthetopof the cone section push the halves apart, while the
aft end of each fairing haIf begins to rotate on hinges located on the stub adapter. After the fairing
halves have rotated about 70 degrees, the hinges allow the fairing to safely and completely separate
from the vehicle. Both fairing halves fall back toEarth, where they land in the Atlantic Ocean. No
attempt is planned to recover these items.

Five separate ground tests, one of which has already been completed, were planned to gather the
necessary data to qualify these new designs for flight. All tests planned will be performed on
full-scale payload fairing structures (either dedicated test articles or flight articles). Three tests have
been planned for the 14-foot diameter payload fairing and two tests have been planned for the
11-foot diameter payload fairing. All tests of the 14-foot diameter payload fairing must be
complete by the planned June 1990 launch for the Combined Release and Radiation Effects
Satellite (CRRES), and all tests of the 11-foot diameter payload fairing must be complete in time to
support stress and dynamics analyses which must be performed prior to the January 1991 Initial
Launch Capability (ILC) date for the Atlas II system.

I. 14-Foot Diameter Payload Fairing Jettison Test

Description: Of the three ground tests planned for the 14-foot diameter version of the new
payload fairings, the jettison test is the only one which has been completed as of this writing. This
test was successfully performed in December 1989 - January 1990 at the Space Power Facility
(SPF) operated by NASA/Lewis Research Center at the Plum Brook Station near Sandusky, Ohio.
This site was chosen because it is the largest vacuum chamber in the world, and is the only one in
which a fulljettison of at least one full payload fairing half could be accomplished. The interior of
the chamber consisted of a metal-walled pressure vessel with a 100-foot diameter circular floor and
a 120-foot high, domed ceiling. This was surrounded by a thick concrete-walled containment
building with a profile which betrays the original intent of the building: to house nuclear powered
satellites during test and checkout. Because the facility had not been used since a 1974 Skylab test,
a substantial effort was required to reactivate the chamber. Now that the chamber has been proved
to be operational, several other jettison tests of payload fairings, including one of the giant Titan IV
fairing, have been planned for the NASA Plum Brook SPF.

The test article for the jettison test was a dedicated test fairing which was manufactured to the same
engineering prints and quality standards as a regular flight fairing. This article was the first
payload fairing completed at the General Dynamics Services Company, Harlingen, Texas assembly
plant. From its interface with the Centaur upper stage's stub adapter to the tip of its nose, the new
fairing stands 39 1/2 feet high. In the SPF, atop its base fixture and stub adapter, the test article
measured in with an impressive height of 52 1/2 feet. Before each completed payload fairing is
shipped from its assembly plant, an acceptance test, consisting of a stackmate and a "rotation" test,
is conducted to verify that manufacturing tolerances were maintained throughout the entire
structure. The rotation test consists of splitting the fairing halves (by a total of no more than one

foot at the top of the cone) using a manually activated screwjack in place of the spring loaded
actuators. As the fairing halves are gradually rotated on the jettison hinges, clearances at various
locations along the splitline longerons are recorded to verify all shear pins are disengaging
smoothly.

The jettison test was a simulation of the event described above, wherein the two halves of the

payload fairing separate after the launch vehicle clears the Earth's atmosphere. The test program
consisted of performing two separate payload fairing jettison events at a simulated altitude of
85,000 feet (chamber pressure = 17 torr). After the inner metal door and the outer concrete

chamber doors were closed, an approximately five hour pumpdown was performed, and after a
short countdown a switch was flipped, immediately supplying power to the explosive bolts,
initiating the jettison event. For each event, one half of the fairing (capped half) was fully
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jettisoned,while theotherhalf rotatedonly fifteendegreesbeforeimpactingthecatchnet(see
Figure2). Bothhalveswereslowedfrom initial netimpactto afull stopby hydraulicallyactuated
brakeswhichwereanintegralpartof thecatchnetsystem.Theforceusedto initiatethejettison
eventwasvariedby usingonly onespring-loadedjettisonactuatorfor thefirst event,andthefull
complementof twoactuatorsfor thesecondjettisonevent.Thisprovidedanalystswith twodata
pointsagainstwhichto comparetheanalyticallypredictedbehaviorof thetestfairing. After the
firstjettisoneventwascompleted,only afewdayswererequiredtoreconfigurethefairing
assemblyfor thesecondevent.

Theprimarypurposeof thejettisontestwastodemonstratethattheanalytical
NASTRANcomputermodelbeing used by structural dynamicists and stress analysts to predict
fairing behavior during vehicle flight environments is able to accurately predict the behavior of the
payload fairing under the jettison test conditions. Pre-test predictions of all test data (pyro shocks,
rigid-body motion, fairing half-breathing modes) were made using the analytical computer model.
Comparison of test data with these analytical predictions will indicate if any corrections are
necessary to the model. Another purpose was to simply demonstrate that the fairing jettison
hardware (actuators, hinges, explosive bolts, shear pins, harness disconnects, etc.) functioned
properly together. An important element of proper jettison functioning is the mechanical clearance
between the fairing hardware as it rotates on the hinges and other critical items on the Centaur
upper stage and the satellite payload. Because the fairing half "breathing" or "pinching" mode
effectively reduces the static clearance, the intent was to design a fairing which was as stiff as
possible. The items which represented potential rotation interferences were simulated during this
test, and dynamic clearances were checked to allow comparison with pre-test predictions. In
addition to exercising generic payload fairing hardware, the jettison test article subsets of two
mylar installations which have been designed for mission-peculiar applications, a thin thermal
shield which covers the interior of the cone and cylinder regions, and the pillow-like acoustic
blankets for interior noise reduction, were installed inside the fairing test article to verify that the
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Figure 2. Payload Fairing Jettison Test Catch Net System.
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bending associated with the jettison event would not damage either the mylar components or their
fastening hardware. It was felt that this verification was necessary to eliminate the possibility that
loose mylar could damage the encapsulated spacecraft during the jettison event.

Data Acauisitions: Test instrumentation for the jettison test included 31 channels of

low-frequency accelerometer data, intended to measure the lowest vibration modes of the fairing
halves and larger scale, rigid-body motions, 21 channels of high-frequency accelerometer data,
which measured the shock environment (generated by the 28 explosive bolts) at various sensitive
locations on the vehicle structure, and 44 channels of strain gage data, which measured the

structural loads in the jettison hinges on which the fairing halves rotate. An analog FM-based data

acquistion system was used to record all test data. Events were recorded by fourteen high-speed
motion picture cameras and three video cameras. The video cameras were installed mainly to
present to the test conductor a real-time image of what was occurring inside the chamber, realizing
that there are no windows through which to look. Exactly half of the fourteen high-speed film
cameras were focused on clearly visible targets mounted on fairing hardware. This film was later

run through a film motion analyzer to produce deflection, velocity, and acceleration data.
Clearance indicators, made of thin solder wire, were used to detect any infringement of the payload

fairing structure during its jettison rotation into sensitive areas surrounding avionics packages or
into the satellite payload envelope.

II. 14-Foot Diameter Payload Fairin_ Structural Test

This test is currently under way at the Sycamore Canyon test site operated by
General Dynamics just north of San Diego, California. During this structural test, the fairing will

undergo a series of static test conditions which will determine if the fairing structure will yield at
predicted design limit loads (based on loads experienced during the transonic condition) or will fail
at design ultimate loads (125% of design limit loads). Because the test article is to be exposed to
ultimate structural loads, the dedicated test fairing which was used for the jettison test described
above, and which will never fly on an Atlas vehicle, will be used for this test. Four different test

configurations (see Figure 3) will be used in order to completely test all of the major structural
elements of the payload fairing: upper and lower nose cone (crush pressure and side load), nose
dome (crush pressure only), cylinder and boattail (burst pressure and vent fin loads), and the all-up

system level configuration (bending moments, shear loads, and axial loads). The last two
configurations will be performed in a new test tower constructed last year specifically for the

purpose of performing payload fairing testing. Included as part of the all-up system level testing
will be test conditions which will reveal stiffness data on the payload fairing structure. It is

planned that 27 separate test conditions will be required to fully accomplish the objectives of this
test. The following paragraphs describe the major test configurations and the purpose for each of
these:

Nose Cone Test Conditions: For the nose cone tests (see Figure 3a), the cone section (21

feet high) will be removed from the fairing cylindrical section and mounted on an airtight base
fixture. A negative pressure differential will be established across the nose cone skin which will
simulate worst-case crush pressures experienced by this structure during the ascent phase of flight.
While the fairing structure is vented at the bottom of the cylinder section, pressure differentials are
still experienced during flight at different fairing stations due to the varying aerodynamic pressure
profiles. Pressures in the cone region during vehicle ascent are of the crush variety due to the
aerodynamic nature and purpose of this structure. A shear load will also be introduced at the top of
the cone during these test conditions in order to observe and characterize post-buckling behavior
and load carrying capability of the monocoque (no external stringers) cone structure. It should be
mentioned that buckling of the structure is expected at high loading conditions and is not to be
considered a failure of the structure. There will be a total of four test conditions devoted to nose

cone testing.
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Nose Dome Test Conditions: The nose dome crush pressure test conditions are fairly straight-
forward, involving only the creation of a negative pressure differential across the nose dome
structure, simulating the crush pressures seen during the ascent phase of the vehicle's flight (see
Figure 3b). No shear, bending, or other structural loads will be imparted into the nose dome
during these tests. There are only two nose dome test conditions.

Cylinder and Boattail Test Conditions: A unique test fixture was required for the cylinder
and boattail burst pressure test conditions (see Figure 3c). Pressurizing the entire volume of the
cylinder using a flat disk to seal the top of the cylinder (about 22,100 square inches) was not an
option because this would have imparted large axial tension loads into the cylinder skin. Instead, a
cylinder of a slightly smaller radius will be inserted inside the fairing cylinder, and the small
annulus between the two cylinders will be pressurized. The primary goal in these test conditions is
to observe the behavior of the explosive bolts and the split line longerons. Gapping of the
longerons in the areas between bolts will be measured to characterize this behavior. No shear
loads will be imparted to the cylinder or boattail structure during this test, but there will be small
loads input into the vent fin structure to observe how flight loads from the vent fin are distributed
into the cylinder skin and the backing frames and stringers. There will be a total of four cylinder
and boattail test conditions.

All-Uo System Level Test ConOitions: There are 17 test conditions to be conducted in the

fully assembled, all-up test configuration (see Figure 3d), including five stiffness test conditions.
In this configuration, the test article will be assembled in exactly the same way that the fairing will
sit on top of the Centaur upper stage during the boost phase of flight. Axial loads will be imparted
both at the top of the nose cone and at the boattail/cylinder interface, and side loads will be able to
be input at two different stations on the nose cone. The 12 non-stiffness test conditions are

constituted by combining three test configurations in four variations: using design limit loads,
using design ultimate loads, loading parallel to the split line, and loading perpendicular to the split
line. The three configurations are side loading at the upper fixture on the cone (which tests the
upper portion of the cylinder), side loading at the lower fixture on the cone combined with
maximum axial compression loads, and side loading at the lower fixture on the cone with minimum
axial compression loads (both of which test the lower portion of the cylinder, the boattail, and the
stub adapter). The maximum axial load condition imparts worst-case compression loads into the
skin, longerons, and explosive bolts on the compression side of the fairing, and the minimum axial
load condition imparts worst-case tension loads into the skin and longerons on the tension side of
the fairing.

Test Instrumentation: About 300 strain gage channels and about 45 deflection transducers will
be present on the test article. The strain gage locations are distributed evenly on the various

components of the test article structure, but typically only half of the gages will be read for a given
test condition. The strain gages are intended to provide an indication of how loads are distributed
throughout the test article structure. Deflection transducers are present mainly to provide data on
the stiffness of the test article and to monitor deflections of the test article to ensure safe test

operations. Load cells on test fixtures and pressure transducers in the test setup will also be
monitored to obtain an accurate picture of loads and pressure differentials being input into the test
article. A set of digital data loggers will be used for data acquisition system, and data will be
delivered to the stress department in personal computer compatible spreadsheet formats.
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|II. 14-Foo| Diameter Payload Fairing Acoustic Test

Descriotion: The acoustic test of the payload fairing will be conducted during May 1990 in
General Dynamics/Space Systems Division's Acoustic/Thermal Test Facility (ATIT) at the Kearny
Mesa plant in San Diego, California. The ATI'F is a dual chamber containing separate acoustic and
thermal test chambers. Both chambers are maintained as 100,000 class clean facilities. Its acoustic

chamber is one of the largest acoustic test facilities with a floor measuring 33 x 40 feet and a ceiling
height of 50 feet (65,000 cubic feet). The chamber is fully reverberant, having a 25-Hz horn, a 50-
Hz horn, and two 100-Hz cutoff horns, all mounted on the north wall of the chamber (see Figure
4). The frequency range of the chamber is 25 - 10,000 Hz, and the rated overall sound pressure
level is 154 dB. Chamber environments and data acquistion are controlled from the control room
on a mezzanine above the chambers. The primary purpose of the ATI'F is the environmental
testing of large space structures. Currently, the major emphasis of the chamber is on the rigorous
checkouts required prior to delivery of the Centaur upper stage of the USAF Titan IV launch
vehicle. This checkout includes a full exercise of Centaur avionics control systems while the
vehicle LO2 tank is filled with liquid nitrogen and subjected to launch acoustic levels. The vehicle
with empty propellant tanks was later subjected to thermal cycling ranging from --40 F to 185 F.

During the acoustic test of the Atlas 14-foot diameter payload fairing, a fully assembled fairing will
be subjected to acoustic levels representative of both the launch and Max Q environments. External
sound pressure levels for both conditions will approach the rated capacity for the chamber. Empty
chamber calibrations will be performed prior to arrival of the test article to better characterize the
obtainable sound pressure levels. Various re-configurations of the test article will be performed in
order to characterize an 1.) empty, generic fairing, 2.) a generic fairing with a satellite payload, 3.)
an empty fairing with the acoustic blanket installation, and 4.) a fairing with the acoustic blanket
installation and a satellite payload. Other design features which will be tested are the noise
mufflers which are placed over the vent holes in the fairing cylinder section. The flapper doors in
the muffler structure (designed to prevent payload contamination and noise intrusion but still allow
for venting of internal burst pressures) will be alternately opened and closed to determine their

effect on internal noise levels. The noise reduction properties of the fairing structure and the
acoustic blanket installation will be fully tested by the completion of the ten test conditions planned
(8 at launch levels and 2 at Max Q levels). In order to fully characterize the fairing acoustics,
sound decay measurements will be taken inside the fairing structure prior to testing, both with the
acoustic blankets installed and with them removed, to determine the reverberant component of the
measurements which will be taken internal to the fairing during the actual testing.

Also of interest to the structural dynamicists are the vibrations induced in the fairing structure by
this acoustic energy. To investigate this phenomena, accelerometers will be placed on mass
simulated avionics packages mounted on the forward end of the Centaur upper stage and on areas
of payload fairing skin. By placing microphones very near the avionics packages and the payload
fairing skin on which accelerometers are placed, data are gathered which will allow a'ansmissibility
studies to be performed. The vibration environments, while significant for the purposes of this
test, are expected to be mild enough to allow the use of flight hardware for this test. The second

flight payload fairing and the third 14-foot diameter article to come off the line at Harlingen will be
used for this test in order to help acheive some schedule compression (the dedicated test article will
be committed to the structural test at this time), and because the standard cork and paint installation,
which was incompatible with the goals of the structural test, is a requirement for the acoustic test.
It was felt that the cork and paint on the nose cone section, bonded on as an ablative for thermal

control, would have a significant impact on the acoustic transmissibility of the nose cone skin.

Data Acooi_;ilion; Acoustic levels internal to the payload fairing structure will be fully
characterized through the use of about 20 microphones positioned both in and around the test
article. Several control microphones will also be used to monitor chamber conditions in real .time.

Vibrational levels associated with the acoustic energy will also be recorded by about 10 triaxial
accelerometer placements on sensitive areas of vehicle structure. A state-of-the-art data acquisition
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Figure 4. General Dynamics Acoustic Chamber, San Diego, California.
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systemin theATI_ controlroomwill recordall testdataandwill allow for awidevarietyof data
presentationformats; 1/3OctaveBandCenterFrequencyPlotsshallbeproducedfor all
microphones.PowerSpectralDensities(PSDs)will beproducedfor all datamicrophonesand
AccelerometerSpectralDensities(ASDs)of all accelerometerdatawill alsobeproduced,aswill
transmissibilityplotsshowingtherelationshipbetweenmicrophoneandaccelerometerdata.
Becausethis testiscurrentlyscheduledfor completionlessthanonemonthprior to launchof
AC-69,thefirst commericialAtlasflight, promptdatareductionandpresentationwill beof utmost
importance.

IV. 1 l-Foot Diameter Payload Fairing, Modal Survey Test

l_,Kigtig._ This first test of the smaller 11-foot diameter fairing, developed for the USAF
Atlas II, will be conducted in two major segments: a "free-free" test condition in which only one
half of the fairing will be tested, and a "fixed base" test condition which will be performed on a
fully assembled and erected fairing. The free-free conditions will be performed at the General
Dynamics operated U. S. Air Force Plant 19 near downtown San Diegc_ and the fixed base test
conditons will be performed at the Sycamore Canyon test facility. The fixed base testing will
immediately follow the 14-foot diameter payload fairing structural test and be conducted in the
same test tower. The test article will be a dedicated 11-foot diameter test article, constructed to the

same engineering prints and quality control criteria as a flight article. This will be the fin'st 11-foot
diameter fairing completed by the Harlingen assembly plant and will be the fourth aluminum
payload fairing off the production line. Because of suspicions that the thermal control cork coating
on the nose cone would introduce significant modal damping, it was determined that it should be
included on the test article in order to accurately reflect the properties of the flight article. The
11-foot diameter payload fairing is somewhat shorter than the 14-foot diameter version, measuring
34 feet in height, 5 1/2 feet less than its larger brother. While it is large enough to accommodate
the DSCS-HI spacecraft, the 11-foot diameter payload fairing is some 1,500 pounds lighter than
the 14-foot diameter payload fairing, weighing in at just over 3,000 pounds. This allows for a
dramatic increase in payload-weight-to-orbit. The 11-foot fairing is even slightly lighter than the
comparably sized 10-foot diameter fiberglass fairing, showing the inherent efficiency of the
aluminum skin, stringer, and frame construction. In addition to supplying data on fairing
vibrational modes, this modal test will be the primary source of stiffness data on the 11-foot
diameter payload fairing structure.

General Dynamics will be assisted in this test effort by Structural Dynamics Research Corporation
(SDRC), which is headquartered in Milford, Ohio. SDRC Engineering Services Division, based
convieniently in San Diego, will be the primary contract agency. SDRC, which has a great deal of
experience in the modal testing field, will:

• perform a pre-test analyses, which will predict mode shapes and frequencies
• determine instrumentation quantities and placements
• install the instrumentation and shakers on the test article

• perform all test operations
° perform all data acquisition
° perform a post-test analysis intended to refine the fairing analytical model
• prepare a test report which presents all test data

Free-Free Test Reauirements: The free-free test condition, in which a single fairing half will be
excited, is being performed to determine the vibrational modes of a fairing (and split barrel) half
which has been separated from its twin half and is free to vibrate at all boundaries. This test condition

is being run in lieu of conducting a separate (and very expensive) jettison test of the 11-foot diameter
payload fairing. This test condition will provide information on the primary breathing modes and the
modes which will load the stub adapter hinges during jettison rotation. About 200 low-frequency
accelerometers will be present on the test article to monitor vibration during this condition. The
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fairingwill besuspendedfrom theceilingin aconcavedown(invertedcanoe,seeFigure5)
orientationandwill besupportedatthreelocationsbybungeecords.Exciterswill bemountedon the
floor andwill beattachedto thesplit line longerons.Multipleinputrandomexcitationwill bethe
primarymethodof excitation,providinginformationonall modesbelow50Hz, but for themajor
modesof interest,sine-sweepexcitationwill beusedtoobtainmorespecificinformation(linearity,
orthogonality,damping,etc.). Orthogonalityrequirementsfor thefree-freeconditionarethatall
off-diagonaltermsof themodalmassmatrixbelessthan0.10. Up to 12total retakesof contaminated
targetmodeswill bepermittedto satisfytheserequirements.

,Fixed Base Test Reauirements: In order to determine the vibrational modes of the fully
assembled fairing as it sits on the Centaur upper stage for the first 3 1/2 minutes of flight, the fixed
base modal configuration will be performed at Sycamore Canyon. The modes of primary interest are
the first three bending modes in the vehicle pitch and yaw axes, the first two axial modes, and the first
torsional mode. If any of these modes is above 64 Hz, a shell mode pair will be substituted. It is
anticipated that about 250 low-frequency accelerometers will be required to monitor vibration during
this test condition. As in the free-free condition, multiple input random excitation will be the primary
source, characterizing all modes below 50 Hz, and sine-sweep will be used to isolate the specified
target modes. Orthogonality requirements are, as in the free-free condition, that all off-diagonal terms
of the modal mass matrix be less than 0.10. A total of 18 retakes will be allowed in order to satisfy
these requirements for all contanainated target modes.
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Figure 5. 11-Foot Diameter Payload Fairing Modal Test Free-Free Condition.
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y, 1 l-F,99t Diameter Payload Fairing Structural Test

The 11-foot diameter payload fairing structural test will be the last fairing test to be
conducted in the Sycamore Canyon test tower. There will be no special setup required for this test as
the configuration and the test article for this test are exactly the same as the fixed base configuration
for the modal survey test, which it will immediately follow. The goals of this test are very similar to
those established for the 14-foot diameter payload fairing structural test: 1.) the fairing structure shall
not yield under design limit loads and 2.) the fairing structure shall not fail under design ultimate loads
(125 % of design limit). A s with the 14-foot diameter structural test, there will be a series of static test
conditions designed specifically to satisfy the above requirements and additionally to determine the
stiffness of the payload fairing structure, serving as a verification of the stiffness data obtained during
the previously mentioned modal survey test. This structural test, however will not incorporate any of
the component level tests which the 14-foot structural test program did, mainly because some of the
su'uctural components tested at that time (upper and lower nose cone, nose dome, and stub adapter)
are common between the 11-foot and 14-foot designs and need not be demonstrated again. The only
configuration for this test is the fully assembled fairing. No burst or crush pressures will be required
during any of the test conditions to be performed in this test program.

Test Conditions: Like the all-up system level tests conducted during the 14-foot diameter
structural test program, loading of the 11-foot diameter test article will be accomplished through a
combination of axial and side loading. There will be axial loading available through a fixture at the
top of the nose cone and side loading available at three locations: the top of the nose cone, near the
base of the nose cone, and near the middle of the fairing cylinder section (see Figure 6). By inputing
incremental side loads at three stations, a very good approximation of flight shear and bending
moment profiles can be obtained, avoiding any seriously overloaded structure. A total of eleven test
conditions will be required to complete the structural test program. There will be four standard
conditions using maximum axial compression loads combined with design limit and ultimate shear
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Figure 6. 11-Foot Diameter Payload Fairing Structural Test Loading Fixtures.
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loads/bendingmomentsconductedbothparallelandperpendicularto thefairing.splitline. Therewill
alsobetwo testconditionswhichusemimimumaxialcompression loads in conjunction with side
loads (design limit and ultimate) parallel to the fairing split line. Maximum axial compression relates
to the Max Q flight condition and the minimum axial compression case corresponds to loading on the
Atlas vehicle at the transonic flight condition. Two test conditions (design limit and ultimate loads)
will require that the axis of compression be off the standard axes which are parallel/perpendicular to
the split line. This is required because of an air conditioning duct door which is located 30 degrees
off the split line. Because of the location of this door at the very top of the fairing cylinder, this
structure cannot be designed to a factor of safety of 2.0, and as such must be tested to ultimate loading
conditions per the USAF contract. An axis of compression which is off the standard axes requires
that a resultant load be reacted, dictating that twice as many load cells be used to impart the test loads.
The final three test conditions are the stiffness tests, one each in the standard side load axes (parallel
and perpendicular to the split line) using pure side load, and one pure axial load condition.

Data Acouisition: Test instrumentation for the 11-foot diameter payload fairing structural test
includes about 80 strain gages and about 35 deflection transducers. Strain gages will be placed in
circumferential patterns at the bottom of the lower cone and at the mid-point of the small transition
cone between the cylinder and the split barrel. Several explosive bolts shall also be instrumented with
strain gages. Deflection transducers will be used mainly to collect stiffness (deflection versus load) data
and to monitor test safety during high loading conditions. Load cells connected to the hydraulic load
cylinders will also be monitored (maximum of seven hydraulic load cylinders operating during
off-axis air conditioning door test conditions) to verify the loads input into the test article. The data
acquisition system used on this test will be identical to that used during the 14-foot diameter payload
fairing structural test program. A digital data logger will record data on the 3 1/2 -inch floppy disks in
standard personal computer spreadsheet format.

Conclusions

To establish the competitiveness of the revitalized family of Atlas launch vehicles (I, II, IIA, and
IIAS) a new series of payload fairings, an 11-foot and a 14-foot diameter version, were designed to
accommodate the widest possible variety of satellites. Because these aluminum fairings are new
designs, the plant at which they are produced is new, and launch customers are very
anxious to fly their payloads, an ambitious and efficient test program is essenti_. Five major tests
have been planned for completion within the span of one calendar year. One of these has been
completed, with every indication that it was a success, one is currently under way, and two more are
scheduled to start in the month of April. Through effective use of test assets, facilities, and
personnel, all testing will be completed, allowing the fairing design to be completely characterized and
then qualified through analysis prior to first launch of each of the fairings.
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The work presented here is the first part of a continuing effort to expanding existing

capabilities in aeroelasticity by developing the methodology which is necessary to utilize

unsteady time-domain aerodynamics directly in aeroservoelastic design and analysis.

The ultimate objective of this study is to define a fully integrated state-space model

of an aeroelastic vehicle's aerodynamics, structure and controls which may be used to

efficiently determine the vehicle's aeroservoelastic stability.

In this presentation, the current status of developing a state-space model for linear

or near-linear time-domain indicial aerodynamic forces is presented.

MOTIVATION:

TO EXPAND EXISTING AEROSERVOELASTIC DESIGN AND

ANALYSIS CAPABILITIES TO INCLUDE THE USE OF

UNSTEADY TIME-DOMAIN AERODYNAMICS

LONG-TERM OBJECTIVE:

DEVELOP METHODOLOGY TO UTILIZE LINEAR AND NEAR-

LINEAR TIME-DOMAIN AERODYNAMICS IN THE SUPERSONIC

AND SUBSONIC REGIMES DIRECTLY IN AEROSERVOELASTIC

DESIGN AND ANALYSIS.

IMMEDIATE OBJECTIVE:

DEVELOP A TIME-DOMAIN STATE-SPACE MODEL OF TIME-

DOMAIN AERODYNAMIC INDICIAL FORCES.
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THE INTEGRATEDAEROELASTICMODEL

To understandtheimportanceof thisresearch,it is necessaryto considerthat

severalcodes[1,2]havebeendevelopedin recentyearswhichcomputetime-domain

unsteadyaerodynamics,however,thetechniquesneededto utilizetheaerodynamicsin

aeroservoelasticdesignhavenotbeenfully developed.
Oneof theonly methodsdevisedto dateto evaluatetheaeroelasticstabilityof

aerospacevehiclesin thetime-domainhasbeenageneralmethodcapableof handlingthe

nonlinearsystem[3]. Thismethodis expensiveasit involvesthecomputationof the

aeroelasticsystemtimeresponsewhich requiressolutionof thenonlinearsmalldisturbance

aerodynamicequations.Further,a frequencydecompositionof theresponseis necessary

to evaluatethestabilityof componentmodes.Theresponsemustberecomputedatseveral

dynamicpressuresuntil aneutrallystablemodeisencountered.Otheravailablemethods
modeltheaerodynamicsdirectlyin thefrequencydomain.

Forlinearandnearlinearsystemsin supersonicandsubsonicflow, however,the
vehiclestabilitymaybeevaluatedwithoutcomputingtheaeroelasticsystemforcedresponse

or transformingforcesto thefrequencydomain.This is accomplishedbyrepresentingthe

time-dependentaerodynamicforcesin state-spaceform coupledwithacommonlyused

state-spacerepresentationof thestructure.Stabilityisdeterminedby theeigenvaluesof the
coupledsystemmatrix.

Thefocusof thispresentationis, again,on theformulationof theaerodynamic

portionof theintegratedmodel.

Uo=]l

Figure 1. Schematic block diagram indicating integration of the aerodynamic
model with the structural model.

209



FORMULATION OF AERODYNAMIC MODEL

The aerodynamic model is derived as the Laplace transform of a commonly used

frequency domain approximation modified from ref. 4. It is transformed directly into state-

space form.

MODIFIED FREQUENCY DOMAIN APPROXIMATION

--v n(s)_
Q(S)= A o+AI_s+ i s+Pib

STATE-SPACE REPRESENTATION IN TIME DOMAIN

Wl

W2 =

,WN

B

O(t)=_[I

V
p_- o ... o

o p v .

0 -.. i_Nb

"Wl ]

I ...I]_ w2 '+_[Ao"/
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.w,i,olt:/W 2 _ B 2
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210



APPROXIMATIONMETHOD

Theapproximationmethodinvolvesaleastsquaresapproximationto theactual
aerodynamicforcetodeterminethescalarsAo,A 1andBi. Thefit isconstrainedatt=0 to

fit exactlyandat largetimesto equaltheasymptoticvalueof thegeneralizedforce. As in

thefrequency-domainrationalfunctiontypeapproximations,aerodynamicpoles,_i, are

initially specified.
Theaerodynamicforcescurrentlybeingapproximatedaretherigid-bodyforces

actingonaNACA0064airfoil andareduetoDowell [5].

APPROXIMATING FUNCTION

/ ' "-"vt/Q(t)= Aorl(t)+Al_ii(t)+i=Z,1Bie o

CONSTRAINTS ON LEAST S QUARES APPROXIMATION

Ao:Q(t=,)

( . /vA_= a(o)- Y.B_-a(.t_) g
i=1
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APPROXIMATION METHOD (CONTI)

A system identification technique frequently used in control system analysis is

applied to regenerate the generalized aerodynamic force. Specifically, impulse and step

responses of the aerodynamic model are generated using a discrete-time state-transition

method. The sum of these responses is the aerodynamic approximation, Q(t)=Q(t), based

on previously determined coefficients and the specified aerodynamic poles.

Due to the discontinuity at t--0 in the impulse input, an assumption is made that at

t=0+, initial conditions are real valued. At t=0-, initial conditions are zero. This

assumption can be shown mathematically.

STATE_srrIoN EQUA_ONS

w(t + 1)= Ow(t)+ ru(t)

O(t) = Cw(t) +Du(t)

WHERE

ASSUMING

O(t)=e [A]T and 1-"= jT e[A],¢ Bdx

w(o-)-o w(o+):eu(o)
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APPROXIMATION METHOD (CONTI)

Improvements to the aerodynamic approximation are made by updating the

aerodynamic poles, l_i, followed by another least squares approximation to recompute the

coefficients. To update the poles, the method used by Peterson and Crawley [7] to

approximate unsteady aerodynamics in the frequency domain is implemented in the time

domain. A norm square-error cost function is defined. In this case, the square of the

difference between the actual aerodynamic force and the approximation is used.. The

incremental change in aerodynamic poles is solved for by inverting the Hessian,

O2j / Ol3iOl3k ' in a single term Taylor series expansion of _J / _. The incremental change

in 13iis multiplied by a scale factor, ct, and added to the current aerodynamic poles. The

scale factor, or, is computed using quadratic interpolation [8] to insure that the cost is

approaching a local exlxema.

The new aerodynamic poles are limited. If a given pole is greater than -0.01, it is

set equal to that value until the next parameter update. To prevent a pole from going to -oo

and ill-conditioning the system matrix later on, the pole is limited to a value which would

produce no more than a 99.5% decrease in magnitude of the exponential over a given time

step.

The two step procedure of computing system coefficients and updating

aerodynamic states is repeated until the cost function has been minimized.

SQUARE ERROR COST FUNCTION

J (1_)=[ Q( t)-Q( t, 13)IT [Q( t)-Q( t, 13)]

NEWTON RAPHSON STEP

WHERE,

__.

AERODYNAMIC POLE UPDATE

_2j

_new = I_ o + or. _i

CONSTRAINTS ON AERODYNAMIC POLES

I_- -0.01 AND I_---In(0.005) / at
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PRELIMINARYRESULTS

TableI briefly describessomeof theprogresswhichhasbeenmadeup to this time.

Foursetsof initially specifiedaerodynamicpoles,associatedcoefficientsandtheinitial cost

areindicatedaswell astheminimumcostquantities.Thefirst setof polesis asubsetof the

poleswhichwereusedbyDowell to generatetheaerodynamicforces.Dowell'szeropole
wasnot includedfor stabilityreasonsandbecausetheA1 termservesthesamepurposeof

providingaconstanttermat t=0. Theothersetsof polesrepresent"random"selections

betweena smallnegativenumberand-1.0,-2.0and-3.0.

A minimumcostwasobtainedfor eachof thesesetsof poles. Thepolescloseto

thoseof thegeneratingfunctionproducedthelowestcost.Minimumcostincreasesfrom

thereastherangeof initial poleswidens. It is notedthatfindingaminimumisn'talways

guaranteed.For somesetsof initial poles,the least-squaresfit doesn'tconvergeor the
programdeterminesalocalmaximainsteadof a localminima.

Oneof the immediateobservationswhichcanbemadefromTableI is thatthe

aerodynamicpolestendtodecreasein magnitudeasthecostis minimized.Thesametrend

occursasotherrigid bodyforcesarebeingapproximated.Theimplicationis thatthefit
improvesat largetimesanddegradesatsmalltimes. In termsof reducedfrequencies,this

meansthatthehighfrequencycomponentsof thecurvearenotbeingfit well. Thus,a

weightedleast-squaresfit anda weightedsquareerrorfunctionwill beconsideredto

improvetheapproximationatsmalltimes.

Finally, anassumptionmadein thequadraticinterpolationsubroutinewhich

computesparameterstepsizeis thatwhenthesquare-errorcostiscomputedfor the"step-

ahead"coefficientsremainconstant. FromTableI, thisappearsto beavalid assumption,

asover theentirerangeof parameterupdates,coefficientshaveremainedfairly unchanged.
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PRELIMINARY RESULTS

LIFT DUE TO PLUNGE
6 POLEAPPROXIMATIONS

Initial Data

Poles* Coefficients

-0.1 -0.433
-0.3 -0.51
-0.8 1.646
-1.2 -2.841
-1.75 2.19
-3.5 -0.574

Minimum Cost Results

A 9 A 1 Cost Poles* Coefficients AQ A 1

0.999 0.034 0.0170 -0.091 -1.24 0.999 -0.036
-0.081 0.805
-0.148 -0.178
-0.520 -0.116
-1.255 0.402
-2.082 -0.123

Cost

0.0012

-0.2 -3.041
-0.4 43.06
-0.5 -124.97
-0.6 121.388
-0.8 -51.012
-1.0 14.162

0.999 -0.074 0.0047 -0.185 -3.202 0.999 -0.056
-0.33 42.016
-0.401 -114.617
-0.470 103.931
-0.613 -37.816
-0.775 9.256

0.0020

-0.334 -6.036
-0.668 46.844
-1.0 -178.225
-1.334 333.826
-1.668 -299.231
-2.0 102.678

0.999 -0.343 0.1995 -0.243 -5.681 0.999 -0.0997
-0.424 42.426
-0.590 -152.419
-0.747 263.921
-0.898 -215.887
-1.049 67.253

0.0166

-0.5 -9.818
-1.0 89.054
-1.5 -365.568
-2.0 723.748
-2.5 -678.553
-3.0 241.917

0.999 -1.266 0.8607 -0.35 -6.406 0.999 -0.421
-0.683 42.793
-1.03 -137.988
-1.409 222.239
-1.837 -174.33
-2.343 53.628

0.2469

b
* Poles indicated are 13i- .

/ V

Table I. Summary of some aerodynamic poles, coefficients and cost functions.
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PRELIMINARY RESULTS(CONTI)

Figure2illustratessomeof theapproximationsto therigid-bodyforcesactingona

NACA0064airfoil whicharecurrentlybeingobtained.Thefigureincludesapairof

figuresfor eachof fourrigid-bodyaerodynamicforces.Thelower figurein eachpair

containsa comparison between the aerodynamic data and an approximation made by using

the initially specified aerodynamic poles. The norm square-error cost is indicated. The

upper figure in each pair indicates the improved approximation after the minimization

technique has been applied. Again, the minimum norm square-error cost is indicated. In

all cases, aerodynamic data has been normalized with the largest absolute magnitude of

force.

As can be seen, the technique does improve the approximation noticeably. In three

of the four cases, the cost has been reduced by about 90%. In the case of "Moment Due to

Pitch", the cost was observed to remain high even after minimization. This emphasizes the

fact that the current method finds only the first extrema in cost. This extrema may be only a

local extrema and not a global one.
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PRELIMINARY RESULTS

NACA0064 RIGID BODY AERODYNAMIC FORCES
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Figure 2. Approximations to NACA0064 airfoil rigid body forces using initial aerodynamic

poles and aerodynamic poles computed for minimum cost.
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FURTHER DEVELOPMENT

Other methods will be considered to determine minimum cost. The method

currently used is effective, but needs modification.

In an effort to improve the fit for small times, a weighted least squares fit will be

implemented to determine the coefficients. A weighted square error cost function will also

be considered.

Sometimes the program converges to a local maximum instead of minimum. Thus,

means of forcing the program to converge on a minimum will be implemented.

FURTHER DEVELOPMENT

• IMPROVE PROCEDURE TO IDENTIFY MINIMUM COST

• INVESTIGATE WEIGHTED LEAST SQUARES APPROXIMATION TO

DETERMINE COEFFICIENTS

• INVESTIGATE A WEIGHTED SQUARE ERROR COST FUNCTION

• INVESTIGATE METHODS OF CHANGING THE SEARCH DIRECTION IF A

MAXIMUM IS BEING APPROACHED INSTEAD OF A MINIMUM
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FURTHER APPLICATIONS

To further evaluate this technique, aerodynamic data generated for a real aircraft by

a time-domain aerodynamic code in the subsonic and supersonic flight regimes will be

modeled. Both rigid-My and flexible modes will be considered.

Finally, to fulfill the whole purpose of developing this model, methodology will

need to be developed to integrate the aerodynamic model effectively with a structural

model. Later, control systems will be integrated into the scheme. Using the integrated

models, system stability will be evaluated.

FURTHER APPLICATIONS

• APPLY TECHNIQUE TO FLEXIBLE AND RIGID BODY GENERALIZED

AERODYNAMIC FORCES ACTING ON A REAL AIRCRAFT

DEVELOP METHODOLOGY FOR INTEGRATING MODEL WITH DISCRETE-

TIME STRUCTURAL MODEL AND PERFORMING STABILITY ANALYSIS FOR

ARBITRARY MOTION
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Motivation

Time-correlated gust loads are time histories of two or more load quantifies due to the same disturbance time
history. Time correlation provides knowledge of the value (magnitude and sign) of one load when another is
maximum. At least two analysis methods have been identified (references 1 and 2) that are capable of
computing maximized time-correlated gust loads for linear aircraft. Both methods solve for the unit-energy
gust profile (gust velocity as a function of time) that produces the maximum load at a given location on a
linear airplane. Time-correlated gust loads are obtained by re-applying this gust profile to the airplane and
computing multiple simultaneous load responses. Such time histories are physically realizable and may be
applied to aircraft structures.

Within the past several years there has been much interest in obtaining a practical analysis method which is
capable of solving the analogous problem for nonlinear aircraft. Such an analysis method has been the focus
of an international committee of gust loads specialists formed by the U. S. Federal Aviation Administration
and was the topic of a panel discussion at the Gust and Buffet Loads session at the 1989 SDM Conference in
Mobile, Alabama. The kinds of nonlinearities common on modem transport aircraft are indicated in figure 1.

The Statical Discrete Gust method of reference 1 is capable of being, but so far has not been, applied to
nonlinear aircraft. As stated in reference 1, to make the method practical for nonlinear applications, a search
procedure is essential.

The method of reference 2 is based on Matched Filter Theory and, in its current form, is applicable to linear
systems only. The purpose of the current paper is to present the status of an attempt to extend the matched
filter approach in reference 2 to nonlinear systems. The extension uses Matched Filter Theory as a starting
point and then employs a constrained optimization algorithm to attack the nonlinear problem.

• Time-correlated gust loads are generated to obtain physically
realizable design loads for the analysis and design of aircraft
structu res

• Active control systems of modern aircraft contain significant
nonlinearities:

Hardware nonlinearities.., control surface rate and deflection limits
Coded nonlinearities in digital control system

• The objective is to employ optimization to determine the excitation
that produces the maximum gust loads on nonlinear aircraft

Matched filter theory for linear systems provides starting guess

Figure 1
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Schematic of Matched Filter Theory as Applied to Linear Systems

Figure 2 contains a schematic of the steps necessary to generate maximum time-correlated gust loads for a
linear system using Matched Filter Theory. The signal flow diagram is presented as two paths; the top path
illustrates the generation of the system impulse response; the bottom path illustrates the generation of the
maximum response of the system.

In the top path, a prefilter (transfer function) representing the gust dynamics is excited by an impulse of unit
strength to generate an intermediate gust impulse response which, in turn, is the excitation to the aircraft.
Computationally, the time history of the response is carried out until the magnitude of the response dies out
to a small fraction of the largest amplitude of the response. The response is normalized by its own root-
mean-square (rms) value. This normalized response, reversed in time, is the "matched" excitation waveform
for the output y. This becomes the input to the next part of the computational process.

The bottom path illustrates how the maximum response of the system and the critical gust profile are
obtained. The matched excitation waveform is applied to the same "known dynamics." The intermediate
gust response is referred to as the critical gust profile. The f'mal time histories are time-correlated gust loads.
The maximum guaranteed response, Ymax, is equal to the rms of the impulse response and may be scaled to

correspond to the gust intensity levels of interest. It should be mentioned that to obtain both the critical gust
prof'de and the maximum response for a different output, a separate but similar analysis needs to be
performed.
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Optimization Scheme to Obtain Maximum Gust Loads for Nonlinear Systems

The objective of the present research is to determine the excitation, with a prescribed rms, that results in a
maximized peak gust load response while producing a gust profile of constant energy level (and thus a
constant probability level) in an aircraft with a nonlinear element. This figure illustrates how an optimization
algorithm may be employed to compute maximized gust loads and their corresponding critical gust profiles
for nonlinear systems. The matched filter approach (as described in connection with figure 2) is used to
provide an initial estimate of an excitation waveform for turbulence of a given intensity, shown in the upper-
left comer of figure 3. The optimization scheme begins with the computation of the coefficients of a set of
orthogonal functions in a series approximation to the waveform, normalized to a unit rms. The
approximation to the excitation waveform is the input to the gust pref'llter, whose output is an iterative gust
profile. The gust profile then becomes the input to the nonlinear airplane model. The final output is a time
history of the load quantity of interest. Note that the shaded area in the optimization loop is analogous to the
"known dynamics" element in figure 2.

The orthogonal approximating function coefficients, which are the design variables in the optimization
scheme, are systematically varied by the optimizer until a maximum peak in the load response in obtained.
The coefficients are constrained to produce a waveform approximation with a unit rms. Since the
approximating functions are orthogonal, Parseval's Theorem allows the rms of the excitation waveform to be
written simply as the sum of the squares of the coefficients.

Ini_sl Excitation Wavelorm TM

,i.ml I "°'--

Figure 3

224



Coefficient Generator Using Fourier Series Approximation

Figure 4 presents an example of approximating the excitation waveform with the coefficient generator.
Fourier series has been investigated as a candidate approximating function. The figure shows an initial
waveform to be approximated, and two examples of Fourier series approximations. The second plot shows
the resultant curve for 41 coefficients. The peak excitation is significantly underpredicted and there is a high
frequency oscillation present during the latter portion of the time history. Using 401 coefficients to
approximate the excitation sufficiently captures the curve's characteristics, as illustrated in the third plot.
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Block Diagram of Aircraft Control System with Nonlinear Element

A simulation model of a drone aircraft was constructed to demonstrate an application of the present method.
The model is based on a configuration used to design the gust alleviation control system as discussed in
reference 3. Figure 5 shows the block diagram of the simulation model which includes the aeroelastic plant,
the gust load alleviation control law, and the nonlinear control element. The shaded block to the left of the
plant is the iterative gust profile input. The shaded block to the fight of the plant is the wing root bending
moment. The maximum absolute value of the wing root bending moment is the objective function.

The plant itself is a linear, s-plane aeroelastic half-model consisting of 2 rigid body modes and 3 flexible
modes. Unsteady aerodynamics were obtained using the doublet lattice method (reference 4). The plant
model also includes the dynamics for the aileron and elevator control surface actuators. The two-input/two-
output control law was obtained using a Linear Quadratic Gaussian design approach with the intent of
reducing wing root bending moment. The controller uses the two control surfaces simultaneously.

The original control system design did not contain any nonlinear elements. The nonlinear element defined in
the figure is based on a spoiler-driven gust load alleviation system used on the Airbus A320 (reference 5).
This nonlinearity is intended to simulate some of the important aspects of an actual system; these aspects
include allowing motion only in one direction and preventing motion beyond a deflection limit.

It should be added that wing bending moment response is dominated by the short period dynamics and is
characterized by a large overshoot and a smaller undershoot. The objective of the load alleviation system is
to reduce the overshoot load above a one g level and to ignore the undershoot loads below this level and the
neutral load condition. The nonlinear element in the controller accomplishes this type compensated load
reduction.
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Status

Figure 6 outlines the status of the task. The entire scheme presented in figure 3 has been implemented. The
nonlinear control system has been simulated with MATRIXx SYSTEM_BUILD (reference 6), which uses a

high-level interpretive language and nonlinear functions that are built into the program. The simulation is run
on a MicroVAX computer. The nonlinear simulation with approximately 2000 time points takes about five
minutes clock time to run.

As indicated in figure 4, 401 terms in the Fourier series are necessary for an adequate representation of the
initial excitation waveform. Since this is the number of terms used in the implementation, this task required

the generation of 200 sine and 201 cosine waveforms for each objective function evaluation.

The optimization is performed using a MATRIXx Optimization Module (reference 7) that also incorporates a

high-level interpretive language. Gradients are generated from within this module using a finite difference
method. This part of the computation is estimated to require 402 evaluations (one more than the number of
design variables) of the objective functions which means performing the same number of simulations.
Using SYSTEM_BUILD and the Optimization Modules, the optimizer was allowed to run for a day and a
half clock time and had to be stopped. It was then decided to modify the method to allow more rapid solution
of the problem. Figure 7 outlines some of the problems encountered and the possible solutions.

Nonlinear control system implemented using MATRIXx
SYSTEM BUILD
- Uses h_h-level interpretive language
- Employs built-in nonlinear functions

Excitation waveform generator utilized Fourier series
- 401 coefficients necessary for good initial waveform approximation
- Waveform composed of 200 sines, 200 cosines, and 1 constant

• MATRIXx Optimization Module used to maximize loads
- Objective function is the peak wing root bending moment response
- Uses equality constraint to maintain constant energy
- Generates gradients using finite difference method

Figure 6
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Research Problems and Proposed Solutions

Figure 7 presents the major research problems identified to date. The central issue is speed. To deal with
this problem three areas are being investigated: simulation speed, number of design variables and optimizer
speed.

The simulation constructed using SYSTEM_BUILD was run on a MicroVAX. Both the high-level
interpretive language of SYSTEM_BUILD and the machine limitations of the MicroVAX contribute to the
slowness of the simulation. To overcome this problem, a FORTRAN-based simulation needs to be
generated using HYPER_BUILD (reference 8) and run on a faster computer using RemoteSim (reference 9).

The coefficients used to generate the excitation waveform serve as the design variables in the optimization
problem. Using Fourier series to approximate the waveform requires an exceptionally large number of
coefficients. Other orthogonal functions such as Chebychev polynomials are being investigated to determine
their suitability for approximating the waveform. A reduction of the number of coefficients can be achieved
by not approximating the discontinuous drop off to zero of the excitation waveform and explicitly setting
waveform to zero at that point.

The speed of the optimization module is the third area for possible improvement. Increasing the speed could
be accomplished by using a FORTRAN-based optimization module instead of the high-level interpretive
language of MATRIXx. Since maintaining the equality constraint is a difficult task to achieve for most

optimizers, the number of iterations through the optimizer loop could be reduced by reformulating the
equality constraint as an inequality constraint. Gradients currently generated by finite differencing might also
be generated analytically. The number of design variables could be reduced by using only the coefficients
with the largest gradients. This would also produce a faster optimization.

Problem:
• SYSTEM_BUILD simulations too slow on VAX computers
Solution:
- Fortran-based simulation such as HYPER_BUILD needs to be generated
- Simulation must be executed on faster machine

Problem:
• Exceptionally large number of Fourier coefficients are needed to generate the

excitation waveform
Solution:
- Use other orthogonal functions better suited for waveform approximation
- Precomputed polynomial waveforms for later use

Problem:
• MATRIXx Optimization Module too slow
Solution:
- Incorporate a Fortran-based optimization module
- Reformulate equality constraint as inequality constraint
- Generate gradients analytically
- Choose as design variables only those coefficients with the largest gradients

Figure 7
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PROCEDURE OUTLINE

The purpose of this investigation is to develop an analytical method to study the

vibration characteristics of piezoelectrically forced quartz plates. The procedure

is schematically shown in Figure I, and can be summarized as follows. The three

dimensional governing equations of piezoelectricity, the constitutive equations and

the strain-displacement relationships are used in deriving the final equations. For

this purpose, a state vector consisting of stresses and displacements are chosen and

the above equations are manipulated to obtain the projection of the derivative of

the state vector with respect to the thickness coordinate on to the state vector

itself. The solution to the state vector at any plane is then easily obtained in a

closed form in terms of the state vector quantities at a reference plane. To

simplify the analysis, simple thickness mode and plane strain approximations are

used.

THREE-DIMENSIONAL
GOVERNING EQUATIONS

THICKNESS MODE
AND PLANE oTRAIN

APPROXIMATION

EQUATIONS J

_r

y

I'" KINEMATIC
RELATIONSHIP]

STATE VECTOR

SELECI_ION

DERIVATIVE OF STATE VECTOR
WITH RESPECT TO THE

Tt_iCKNESS AXIS

EXPLICIT EXPRESSION FOR

STATE VECTOR AT ANY PLANE
IN ] ERMS OF TttE STATE VECTOR

AT A REFERENCE PLANE

..................-t;......

Figure 1
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The governing equations of piezoelectricity consisting of the equations of motion

and the charge equations of electrostatics are given by Equations (I) and (2). The

quantities aij , u i and D i are the components of stress, mechanical and electrical
displacements.-The constitutive equations are presented in Equations (3) and (4),

where Cijkl is the elastic stiffness, and ekl , eijk, Ei and Sij are respectively the
components of mechanical strain, piezoelectric strain constants, electric field and

dielectric permitivity. The relationship between mechanical strain and displacement,

and the relationship between electric field and electric potential are given in

Equations (5) and (6) respectively.

EQUATIONS OF MOTION

aij,j = p ui,tt
(i)

CHARGE EQUATION OF ELECTROSTATICS

Di, i = 0 (2)

CONSTITUTIVE EQUATIONS

aij " Cijkl _kl - ekij Ek

D i = eij k (jk + Sij Ej

(3)

(4)

eij _ 0.5 (uj, i + ui, j)

Ei ---4,1

(5)

(6)

Figure 2

233



The plane xl-x3 is taken to be the plane of the plate, and the x2-direction is

considered as the thickness coordinate. The simple thickness mode approximation, in

which the various quantities are just functions of the thickness coordinate, is used

in the analysis. Also, the system is considered to be under plane strain conditions.

Invoking the above assumptions, and using the contracted notation given by Equation

(7), the surviving system of equations are presented in Equations (8) through (i0).

Differentiating the last of the equations (I0), using the third of Equation (8) and

integrating the resulting equation twice, the expression for _ is obtained

(Equation ii), where A and B are constants of integration. A constant field does not

produce any electric field, hence the constant B in Equation (ii) is neglected.

Substituting Equation (ii) in Equation (i0), the expressions for the non zero stress

components are obtained, and are given in Equations 12 and 13.

CONTRACTED NOTATION

II, 22, 33, 23 OR 32, 31 OR 13, 12 OR 21

i, 2, 3,_4, 5, 6

(7)

INVOKING SIMPLE THICKNESS MODE AND PLANE STRAIN ASSUMPTIONS

a6,x2 - p Ul,tt

a2,x2 - p u2,tt (8)

D2,x2 - 0

_2 " U2,x2

_6 - 1/2 Ul,x2

E2 - -_,x2

<9)

a 2 - 1/2 C26 Ul,x2 + C22 U2,x2 + e22 _,x2

_6 " C66 Ul,x2 + C62 U2,x2 + e26 @,x2

D 2 - 1/2 e26 Ul,x2 + e22 U2,x2 - $22 _,x2

(I0)

- { 1/2 e26 u I +e22u 2 }/$22 + Ax2 + B (II)

a 2 - a26 Ul,x2 + a22 U2,x2 + e22A

a 6 - a66 Ul,x2 + a62 U2,x2 + e26A

(12)

(13)

Figure 3
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A state vector {V} defined by Equation (14) is chosen. The derivatives of the state

vector with respect to x2 is obtained from Equations (8) through (13) and the

resulting expressions are given in Equations (17) through (20). The elements of the

matrices BI, B2 and B3 are made up of the material constants and derivatives with

respect to x2 and time (t).

STATE VECTOR

{V} - [ {Vl }T {V2 }T ]T

{Vl} = [ Ul a2 IT ; {V2} - [ a6 u2 ]T

(14)

[Vl},x 2 = [ B I ] {V 2} - A (bI} (15)

{V2},x 2 = [ B 2 ] {V I} - A {b2} (16)

{V},x 2 = [ B 3 ] {V} A {b3} (17)

BI=
I/a66 -(a62/a66) a/ax2

0 p a2/at 2

bl=
e26/a66

0

(18)

B2 =

p a2/at 2 0

-(a26/a22) a/ax 2 i/a22

b2 =

0

e22/a22

(19)

a62 = C62 +e26e22/S22

a26 = 1/2 {C26 + e22e26/S22}

a66 = 1/2 {C66 + e262/S22)}

; a22 = C22 + e222/S22

(20)

Figure 4
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A solution to the differential equation given in Equation (II) can be easily

obtained and is given in Equation (21), where {VOI is the state vector evaluated at

x2=0o The analyst has the flexibility of choosing any plane as the appropriate

reference plane. The exponential term in Equation (21) can be expressed in an

infinite series, and the powers of the matrix B3 can conveniently grouped as shown

in Equation (23).

V - e B3 x2 {V0} + B3 -I A b3

{V0} - {V}x2= 0

(21)

eB3x2 {VOI- [ I + B3 x2 + (B3 x2)2/2!+(B3 x2)3/3!+ .... I (VO} (22)

[Po] [0 IQ]B3 2 = B3 3 =

0 Q B2P 0

p2 O 0 BIQ 2

(23)

[ P ] = [B1] [B2]

[ Q ] = [B2] [B1]

Figure 5
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Using the expressions given in Equation (23), the infinite series expansion for the

exponential term can be conveniently grouped as shown in Equation (24). The elements

present in Equation (24) can be recognized as a convergent series. The resultant

expression is given by Equation (25). Substituting this expression in Equation (21),

the final equation for the state vector at any reference plane in terms of the state

vector at a reference plane is obtained (Equation 26).

eB3x2 {V0} = I + [ ] x2 + x22/2! +
B2 0 0 Q

0

B2P

BIQ p2 0

0 0 Q2

[_2p 2 BIQ2 10 ] x25/5! + ....
(vo) (24)

cosh (x2JP)

B2JP sinh (x2_P)

BI _Q sinh (x2_Q)

cosh (x2_Q)

IV0} (25)

= [R] (V0)

[V) = [R] {VO} + A [B3] -I {b3} (26)

Figure 6
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A, B

aij

Cijkl

D i

ekij

Ek

Sij

ui

_kl

P

aij

Symbols and Abbreviations

Constants of integration

Constant coefficients

Elastic stiffness

Components of electric displacement

Components of piezoelectric strain constant

Components of electric field

Components of dielectric permittivity

Components of mechanical displacement

Components of strain

Electric potential

Mass density

Stress components
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Introduction

For more than two decades, viscoelastic materials have been commonly used as a

passive damping source in a variety of structures because of their high

material loss factors. In most of the applications, viscoelastic materials

are used either in series with or parallel to the structural load path. The

latter is also known as the constrained-layer damping treatment 1,2. The

advantage of the constrained-layer damping treatment is that it can be

incorporated without loss in structural integrity, namely, stiffness and

strength. However, the disadvantages are that (i) it is not the most

effective use of the viscoelastic material when compared with the series-type

application, and (2) weight penalty from the stiff constraining layer

requirement can be excessive. To overcome the disadvantages of the

constrained-layer damping treatment, a new approach for using viscoelastic

material in an axial-type structural components, e.g., truss members, was

studied in this investigation.

MATERIAL

.Jllllllllllllllllll/lllllll/lllllillllllll_lllllllll/llll/lllllll/lllll,

lllJlllllllllllllllllllllllllllllllllllllllllllllll/lllll .... i ..... iIIii_

240



Elastic Tailoring in Composite Structures

It is well known that, with the properly arranged orientation sequence in

layup, composite structure can exhibit various types of deformation coupling

when subjected to loading. In certain applications, such anisotropic behavior

can be tailored to benefit specific needs. For example, the bending/twisting

coupling has been extensively studied for the purposes of aeroelastic

tailoring 3,4. The application of extension/twisting deformation coupling to

the constrained-layer damping treatment was explored in Ref. 2. In Refs. 5

and 6, a new approach of applying extension/twisting deformation coupling to

damping treatment was proposed for the axial-type truss member. In this

approach, the viscoelastic material is embedded in a structural member made of

fiber reinforced composite material. By a judicious tailoring, the structural

member can exhibit the extension/twisting deformation coupling such that the

viscoelastic material is sheared in twisting while the structural member

undergoes an axial deformation.

Nx i Nx
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New Naterial Concept

However, the difficulty with this new approach is that it requires a built-in

twisting freedom in the truss member. In reality, such added design

complexity is usually forbidden. To avoid such undesirable requirement, a new

material concept of using saw-toothed (or V-shaped) fiber in reinforced

composite was conceived in Ref. 7. With the V-shaped fiber, a truss member is

allowed to undergo twisting deformation at knee-points while its both ends

remain fixed. Damping performance was studied on a plane strain model as

shown below. The resulting shear strain distribution in the viscoelastic

material is a hyperbolic sine function along the member axis which is similar

to the result of constrained-layer damping treatment 2. The member loss factor

is estimated from the expression of complex stiffness as

tanh J_

K m = K'( i + #" ) _m =

Imaginary (Km)

Jfl Real (Km)

where

AI6 2 2G 2 All

= L 2

ALIA66 AI62 t 2 AIIA66-AI62

Examining the above expression indicates that the member loss factor is only a

function of two parameters. One is the extension/twisting coupling

coefficient, #, which is a function of the composite material properties and its

layup. The other is a combined geometry/material parameter, ft.

FIBER
REINFORCED
COMPOSITE

VISCOELASTIC
MATERIAL

FIBER
REINFORCED
COMPOSITE
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Analysis Model for Waved Fiber Reinforced Composites

The idealized V-shaped fiber is useful in performance trade study. In

practice, however, the V-shaped fiber is not really feasible because of its

sharp corners. In this investigation, the sine-waved fiber reinforced

composite is analyzed for this new damping treatment approach. The analysis

model of a truss member made of iso-phased sine-waved fiber reinforced

composite is shown below. In this design, the fiber orientation is

antisymmetric with respect to the viscoelastic material (VEM) layer, i.e.,

[+_n/VEM/-_n] layup, such that the twisting deformation in the viscoelastic
material is maximized under axial load. Because of the continuously varying

fiber orientation, the truss member's elastic properties are varying along the

member axis. In this study, a concept of using equivalent homogeneous model

with effective elastic properties is proposed to evaluate the member's damping

performance. The effective anisotropic properties are estimated in average

sense over one quarter of the fiber's spatial wavelength.

X = FIBER'S SPATIAL
WAVELENGTH

UNI-DIRECTIONAL
DIFFERENTIAL
ELEMENT

Sij - ELEMENTAL
ELASTIC
COMPLIANCE

[_c_ -_,"?_.:-"#',lEFFECTIVEANISOTROPIC
II I_i'._"_:.-i;'_'_tPROPERTIES:
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Effective Anisotropic Properties

Spatial dependent strain-stress relation:

{c} = [s(e)] {a)

where the Sij's are the elemental elastic compliance and the tangent fiber

orientation, _, is given by

2_a

8 = tan-l[ cos(2_x/A) ]

The effective compliance is

_ 1 [A/4= __ Sij(x)'dx
Sij _/4 Jo

FIBER

E L = 40 Msi

E T = 1.5 Msi

G LT = 0.8 Msi

VLT = 0.26

3000__, J , I _ i I __

I<
0 : I I I

I<

300

0

I I I I I I I I

-
0 ° 90 °

03
03

I<

200

0

2

P

0

I I I I I I I I

D m

1 I I 1 I I I I

I I I I I I" I I

I i J

0 ° 90 °
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Examples

Given the material loss factor, Nvem = 1.0, functional dependency of the

member loss factor on the extension/twisting coupling coefficient, #, and

parameter _ are illustrated in the following example. It is interesting to

note that the flopt is not very sensitive to the variation in #. For the

example of HMS/3501-6, _opt = 1.2 at r = 18 °, the maximum loss factor
attainable is about 17%.

4O

0
0.1

I_=1

i i ] I i
I 10 100

13
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Summary

o New material concepts, i.e., V-shaped and sine-waved fiber reinforced

composite materials, were investigated for the new damping treatment in

axial-type structural members.

o The underlying mechanism of an elastically tailored damping member depends

on the extension/twisting deformation coupling in composite materials. As a

result, the embedded viscoelastic material is sheared in twisting when the

member undergoes axial motion.

o Shear strain distribution in the viscoelastic material is similar between

the extension/twisting coupled damping treatment and the constrained-layer

damping treatment.

o A concept of using an equivalent homogeneous model with effective

anisotropic properties was proposed to evaluate damping performance of

members made of iso-phased sine-waved fiber reinforced composite material.

o Numerical examples show that the sine waved-fiber reduces the degree of

extension/twisting deformation coupling as compared with the V-shaped fiber

reinforced composite material. However, its effect on the $ parameter is

less critical because the $ parameter can be optimized through other

geometric parameters.

o With the optimally selected geometric and material parameters, the

attainable loss factor of the elastically tailored damping member ranges

from 10-25% which is about in the same performance range of the damping

member with constrained-layer damping treatment. The major advantage of the

elastically tailored damping member is that there is no additional weight

penalty such as the constraining layer of the constrained-layer damping
treatment.
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OBJECTIVES

This work-in-progress presentation describes an ongoing research activity at the NASA Langley
Research Center to develop analytical methods for the prediction of aerothermoelastic stability of
hypersonic aircraft including active control systems. The objectives of this research include application of
aerothermal loads to the structural finite element model, determination of the thermal effects on flutter, and
assessment of active controls technology applied to overcome any potential adverse aeroelastic stability or
response problems due to aerodynamic heating- namely flutter suppression and tide quality improvement.
For this study, a genetic hypersonic aircraft configuration was selected which incorporates wing flaps,
ailerons and all-moveable fins to be used for active control purposes. The active control systems would
use onboard sensors in a feedback loop through the aircraft flight control computers to move the surfaces
for improved structural dynamic response as the aircraft encounters atmospheric turbulence.

• Construct a Generic Hypersonic Vehicle to Use in Performing Analytical
Studies

• Develop and Analyze Aeroelastic Models Incorporating the Effects of
Aerodynamic Heating

• Apply Active Controls to Compensate
for Degraded Dynamic Responses

• Flutter Suppression System

• Ride Qualities Augmentation
System
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HYPERSONIC ANALYSIS AND DESIGN APPROACH

The current aeroservothermoelastic (ASTE) analysis and design capability is outlined schematically
below. The method consists of three primary steps; 1) the determination of thermal loads acting on the
structure due to aerodynamic heating, 2) the development of hot and cold aeroelastic mathematical models
for flutter analysis including the computation of unsteady aerodynamic forces acting on the structure, and
3) the design, analysis, and simulation of active control laws.

Thermal
Loads

Finite [
Element

Structural
Model

Pi!ton

Theory
Unsteady

Aerodynamics

Hot & Cold
Aeroelastic

Models

Robust
Control

Design

Closed-Loop
Analysis and

Nonlinear
Simulation
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APAS AEROTHERMODYNAMIC MODEL

The Hypersonic Arbitrary Body Program (HABP) of the Aerodynamic Preliminary Analysis
System [1] (APAS) was used to model the generic hypersonic aircraft configuration and obtain steady-
state aerodynamic forces and heat loads. For a given flight condition (angle-of-attack and control surface
deflection), the HABP module was used to compute aerodynamic lift and moment coefficients and
aerodynamic center location, as well as the radiation equilibrium wall temperatures on the vehicle. The
aerodynamic results were used to calibrate the unsteady aerodynamic force calculations by comparison of

pitching moment coefficient and aerodynamic center location. The unsteady aerodynamic force models
were then modified to yield compatible results. The radiation equilibrium wall temperatures were used
directly as heat loads in the finite element structural model to determine structural stiffness changes caused

by thermal stresses and material property changes.

Aerodynamic Preliminary Analysis System (APAS) Hypersonic
Arbitrary Body Program (HABP) module used for steady-state
aerodynamic calculations

• Radiation equilibrium wall temperatures

• Lift and moment coefficients, aerodynamic center locations

Results used to

• Provide heat loads for thermal structural analysis

• Calibrate unsteady aerodynamic codes
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FINITE ELEMENT MODEL

A conventional structural concept was used for the generic aircraft configuration of this study [2].

The fuselage was modeled as an elliptical cross section (width/height ratio 2) consisting of stiffened ring
and skin construction. The low-aspect wings were modeled as fully attached to the fuselage consisting of

spars, ribs, and skins. The wing leading edge sweep is 70 deg. and the wing section is a 3% circular arc
airfoil. A body weight fraction, defined as the weight of the structural material contributing to stiffness
divided by gross takeoff weight, of 8.6% was used to determine the required structural mass. Material
properties consistent with titanium aluminide were assumed for all structural elements. The wing flaps,
ailerons, and all movable fin were modeled separately and attached to the fuselage/wing model by spring
stiffness elements modeling actuator stiffness characteristics. The Engineering Analysis Language [3]
(EAL) structural analysis code was used to compute hot and cold vibration mode frequencies and mode

shapes. The visual appearance and overall character of the mode shapes did not change with variations in
temperature, although significant changes did occur in frequencies. Heating effects decreased the

frequencies by thirteen to twenty percent.

NATURAL FREQUENCIES (Hz)

MODE COLD HOT

1 3.01 2.43
2 4.02 3.48
3 7.06 5.67
4 7.70 6.56
5 9.47 7.63
6 10.96 8.84
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UNSTEADY AERODYNAMICS - LESSONS LEARNED

Significant problems were encountered in computing valid unsteady aerodynamic forces for use in
aeroelastic stability analyses in both subsonic and supersonic flight regimes. For the subsonic case, two
versions of the Doublet Lattice Method [4] (DLM) aerodynamic panel code were used, as was a Kernal
Function Method [5] (KFM) code. In the case of the DLM, the two versions were inconsistent in force

results (both magnitude and phase). This was attributed to nonconvergence of the DLM due to insufficient
numbers of aerodynamic boxes. The minimum number of required boxes was later estimated to be on the
order of 675, far exceeding reasonable computational cost. Subsonic flutter boundary predictions using
the KFM code were erratic, showing wide oscillations in flutter dynamic pressure for small subsonic
variations in Mach number. For the supersonic case, the MSC/NASTRAN [6] Mach Box [7] and Piston
Theory [8] methods were tried. It was found that the Mach Box result would not compare with analytical
solutions for simple check cases. The Piston Theory method was found to be restricted to rigid chords,
typically valid for high aspect ratio wings which are very stiff chordwise, and did not include airfoil
thickness effects. Two new second-order Piston Theory codes including thickness, camber and
chordwise bending effects were written, one in EAL and one in FORTRAN, both taking advantage of an
existing aero/structure interface [9]. The FORTRAN version aerodynamic force results were ultimately
used for flutter analyses because of consistency with the earlier APAS steady-state results.

SUBSONIC:

Doublet Lattice

• Inconsistent between code versions (ISAC and NASTRAN)

• Estimated 675 aerodynamic boxes required for convergence

• Exceeds inhouse code capability, very expensive in NASTRAN

Kernel Function

• Erratic flutter boundary predictions

SUPERSONIC:

Mach Box

• NASTRAN results do not agree with analytical solutions for
simple cases

Piston Theory

• NASTRAN model limited to (a few) rigid chord panels

SUPERSONIC SOLUTION: Write a new piston theory code

• Linked to ISAC aero/structure interface to model nonrigid chords and
thickness
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PISTON THEORY AERODYNAMIC IMPLEMENTATION

At sufficiently high Mach numbers "local" wave theory is a good approximation to the unsteady
aerodynamics. The local pressure is related to the normal free stream velocity in a similar manner as the

pressure in a one-dimensional piston chamber is related to the velocity of the piston. A local, linearized
pressure equation is represented by the equation shown in the figure. The various aircraft surfaces were
represented by trapezoidal panels similar to the one indicated in the figure. The normal velocities over the
surfaces were computed using surface spline interpolation with the normal velocities located at the center
of each trapezoidal panel. The point forces subsequently created by the piston theory pressures were also
concentrated at the center of each panel. The generalized aerodynamic force for each mode was generated

by summing these point forces, weighted by the interpolated mode shapes, over the aircraft surfaces. The

additional symbols used in the figure are defined as follows: Ap, pressure difference between upper and

lower surfaces; p, density; a, the local speed of sound; _,, ratio of specific heats; Z, the relation describing

the contour, or the thickness of the vehicle component; z, the displacement of the discrete point; and V, the

freestream velocity.

V

(U) Linearized, second-order equations including thickness effects

Ap(x,y,t) =-2pail + G_-_ Z(x,Y)IIV_-_ + _t_(x,y,t) 1

G = M4 ('Y + 1)- 4132 ; 13= ,J-M2 _ 1

2133

(U) z(x,y,t) calculated at discrete points using surface spline interpolation
of mode shape data

(U) Generalized aerodynamic force for each mode computed by numerical
integration of the pressure over the surface
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AERODYNAMIC MODELING INFLUENCE ON FLUTTER DYNAMIC PRESSURE

The relative importance of the aerodynamic influence of various vehicle components to flutter was
evaluated. The importance of the inclusion of a modeling effect was measured by the percent change in
flutter dynamic pressure. Four of the effects examined were found to be significant. The baseline
analysis contained a restrained flat plate representation of the wing and used the first six flexible modes.
Introducing the rigid body plunge and pitch modes into the analysis increased the flutter dynamic pressure
by ten percent. Because the structural frequencies are very low, the structural modes are influenced by the
short period mode. For this configuration, the rigid body motion helps to dissipate the system's energy
into the airsu'eam, thus inhibiting flutter. The addition of a flat plate representation of the fuselage
decreases the flutter dynamic pressure by ten percent. Fuselage motion dominates the first and third
flexible modes; including this motion in the analysis increases the aerodynamic force input and encourages
flutter. Addition of an aerodynamic representation of the vertical fin further decreases the flutter q by ten
percent for the same basic reason. The fifth flexible mode has significant vertical fin contributions,
making it important to the analysis. The remaining changes to the aerodynamic model are inclusion of the
thickness effects of the wing and the fuselage, both of which cause an increase in the flutter dynamic
pressure. The wing contour effects changed the flutter value by ten percent, while the fuselage contour
effects changed it by only two percent. The final model used for analysis and design incorporated all of
the above effects except for fuselage thickness.

Basic Model:

Flat Plate Clipped Delta Wing with 70 Degree Leading Edge Sweep
First 6 Flexible Modes

CHANGE TO MODEL

• Inclusion of Rigid Body Pitch & Plunge Modes

EFFECT ON q't

_10%

• Addition of Flat Plate Fuselage _ 10 %

• Addition of Wing Thickness Effects

• Inclusion of Flat Plate Vertical Fin

• Addition of Fuselage Thickness Effects 2 °/o_
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ALTITUDE ROOT LOCUS

This figure shows the variation of the eigenvalues associated with the rigid body and first four
flexible modes, as altitude is varied. The model used for this typical root locus was the heated structure at
Mach 2.0. The arrows indicate decreasing altitude. This analysis was performed at a matched point, so

both the density and velocity changed with altitude. Flutter is determined as the cross-over of the
imaginary axis. From the figure it is seen that the eigenvalue associated with the third flexible mode
moves into the right half plane at a frequency of 43.5 radians per second.

MACH 2 HOT

IMAG. PART
(1 / SEC)

50

4O

30

2O

10

4th Flexibl

-6
I I

e _rlutter

_ 2nd

Fiexibie

1st
Flexible

Short
Period

I I I I

-3 0

REAL PART
(1 / SEC)

xible

3
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EFFECTS OF MACH NUMBER AND HEAT ON SHORT PERIOD MODE DYNAMICS

The short period mode dynamics are influenced by both the structural properties and by the
aerodynamics. The figure shows the changes in short period behavior incurred due to the effects of

structural flexibility, heating and Mach number. The six curves represent the trace of the short period
eigenvalue in the complex plane as the altitude is varied ( altitude decreases from right to left along each
curve).

In an aeroelastic system, the roots of any one mode are influenced by the other modes near it.
Because the structural frequencies for these configurations are low, in the neighborhood of the rigid body
frequency, it is anticipated that they would exhibit a large degree of influence over the short period mode.
This influence can be seen by examining the roots of the rigid vehicle versus the eigenvalues after the
effects of flexibility have been included. The figure indicates that including flexibility tends to have a
destabilizing effect. The effects due to the aerodynamic heating can be seen by comparing the hot and
cold data for the same Mach number. At either Mach number, the destabilizing effect of the heating is seen
as the roots for the hot data fall further to the right in the s-plane than those corresponding to the cold data.

To determine the effects of the aerodynamics, the curves for the rigid data, the hot data and the cold
data must be examined separately. It is seen that as the Mach number is increased, the short period
frequency is increased and the damping is decreased. Thus, increasing Mach number also has a
destabilizing effect on the short period dynamics.

Comparing the curves in these three ways shows clearly that the Mach number has a much larger
influence than either the flexibility or the heating.
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HOT / COLD FLUTTER RESULTS

The flutter characteristics are presented as a set of curves showing regions of instability. The

flutter boundaries illustrate the destabilizing effects of both heating and Mach number. The region below
either curve represents the region for flutter-free flight. As the Mach number is increased, the flutter
dynamic pressure is increased. Heating lowers the flutter boundary over the entire range of Mach
numbers, indicating that there will be an instability at lower dynamic pressures.
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CONCLUSIONS / FUTURE PLANS

An aerothermoelastic analysis method has been developed. The thermal loads due to aerodynamic
heating are incorporated into the finite element analysis. Application of the aerothermal effects reduced
structural frequencies and lowered the flutter boundary. The flutter was found to be influenced by all
components of the vehicle; analyses of hypersonic configurations must consider aircraft flutter versus
wing flutter.

Future work in this area will concentrate on control law design and closed loop analysis. Plans
include design of a flutter suppression system which will raise the flutter boundary of the heated vehicle up
to that of the cold vehicle. Ride qualities improvement will also be a focus in the control law design phase
of the project. Additionally, the linear unsteady aerodynamic codes will continue to be evaluated and
improved. Flutter boundaries for the heated and unheated vehicles will be defined from the subsonic flight
conditions to hypersonic speeds.

CONCLUSIONS

• Aerothermoelastic Analysis Method Developed

• Aerothermal Loads Incorporated into Finite Element Analysis

• Reduced Structural Frequencies

• Lowered Flutter Boundary

• Flutter influenced by all vehicle components

• Must Consider Aircraft Flutter Instead of Wing Flutter

PLANS

• Further Evaluate and improve Linear Unsteady Aerodynamics Codes

• Define Flutter Boundaries for Hot and Cold Vehicles from Subsonic to
Hypersonic Speeds

• Apply Active Controls to Define Technology Benefits for
Hypersonic Aircraft
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WEIBULL STATISTICAL ANALYSIS OF FIELD INSPECTION AND AIRCRAFT

USAGE DATA HAS BEEN USED TO PREDICT THE RISK OF STRUCTURAL FAILURE

We have described in previous work (ref. 1 and 2) the use of damage

tolerance analysis and Weibull statistical analysis in the

assessment of structural risk. The interference of the failure

distribution and the aircraft life distribution is computed to

determine the risk of structural failure. Information from any

number of aircraft from different bases can be combined to give a

projection of the risk associated with continued operation at the

same or modified usage levels.

Three parameter Weibull distributions are determined from the flight

usage data and the failure information obtained from field

inspection of the aircraft. In the present analysis, deterministic

flaw growth analysis is used to project the failure distributions

from inspection data.
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DETERMINATION OF FAILURE DISTRIBUTION FROM FIELD

SERVICE INSPECTION DATA

Inspection data is reported for each critical point in the aircraft.

The data will indicate either a crack of a specific size or no

crack. The crack length may be either less than, equal to, or

greater than critical size for that location.

Non-critical length cracks are projected to failure using the crack

growth characteristics for that location to find the life when it

will be at critical length. Greater-than-critical length cracks are

projected back to determine the life at failure, that is, when it

was at critical length. The same process is used as in the case of a

non-critical crack except that the projection goes the other

direction. These points, along with the critical length cracks are

used to determine the failure distribution.

To be able to use data from different aircraft to build a common

failure distribution, a consistent life variable must be used.

Aircraft life varies with the severity of the usage, therefore the

number of flight hours for a particular aircraft must be modified by

its usage factor to obtain a normalized life which can be compared
with that from other aircraft.
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USAGE FACTOR ALLOWS THE COMPARISON OF DATA FROM DIFFERENT AIRCRAFT

The aircraft is designed to a baseline or design spectrum. This is

determined from the design mission requirements for the aircraft.

The actual usage of the aircraft will vary greatly depending upon

where the aircraft is based when it enters service. Some bases fly

many more benign flights and others fly more severe flights than the

baseline. For flight hours to be compared from one aircraft to

another, they must be related to the same severity level or no

direct comparison is possible. The usage factor is used to adjust

the actual number of flight hours for the difference between the

baseline usage and the actual usage of the aircraft. This method has

been shown (ref. 3) to accurately account for the effect that usage

has on the crack growth characteristics. The usage factor is the

ratio of the projected life of the aircraft for the present usage to
the baseline life.
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FIELD DATA IS USED TO DETERMINE THE THREE-PARAMETER
WEIBULL DISTRIBUTION

Data from field inspections are used to determine the failure and
life characteristics of the aircraft under consideration. The

distribution of current lives is found from the number of hours

(adjusted by usage) recorded for each aircraft. The failure
distribution is found from the set of lives associated with the

critical crack lengths. Again, the lives must be adjusted for the

difference in usage.

Linear regression is used to determine the best 3-parameter Weibull
fit to the data. The median ranks are determined for the failed

points and take into account the effects of the suspended items

(non-cracked aircraft) on the rank values. The minimum expected life
is found from a search process which determines what minimum life

value gives the best straight line fit to the data.

The difficulty with this process is twofold. First, there are

generally only a few cracked parts from which you want to construct
the failure distribution. The accuracy of the distribution so

computed can be questioned. Second, the growing, or projecting,

process assumes that the crack growth characteristics are
deterministic.
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MULTIPLE FAILURE MODES ARE SOMETIMES PRESENT

Failures will sometimes result from several phenomenon.

Manufacturing or material defects can precipitate early failures.

These will generally occur well before the normal service failures.

These failures are of interest, but it is important to separate this

behavior from the normal service behavior for fleet management

purposes. In addition, it is improper to attempt to fit a Weibull

distribution to the combined data set since it does not correctly

characterize either behavior pattern. The data set must be pruned to

include only the long-term effects of the normal service life if an

accurate picture of the failure rate and risk are desired. Generally

the bulk of the data will be in this set, with the early failures

being few in number.

Similarily, if one wants to concentrate on short-term failures, the

data must be pruned of other failure modes. Plotting all data, as

shown in this chart, can help identify when more than one failure is

represented in the data.
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INITIAL INSPECTION DATA FOR 158 AIRCRAFT SHOWS 6 FAILURES

Inspection of 158 fighter aircraft revealed the existence of 6
aircraft with cracks of critical length at a point of concern on the

vertical tail. Computation of the Weibull distribution shows that

the data fits the curve fairly well, exhibiting a 0.97 correlation
coefficient.

Closer examination of the data points indicates that perhaps there

are two failure modes present. The first failure at 770 hours seems

to be isolated from the remaining five points.

99.9

J

m

10.0 --

Percent
Failure -

1.0--

0.1 _---

m

0.01
100

I I I I [ I I 1 I

1000 10000

Flight Hours

Figure 6

269



CUMULATIVE PROBABILITY OF FAILURE FOR ORIGINAL DATA

The cumulative probability of failure for the original data set

containing six failures is shown. Included on the plot is the 90%

confidence band. The confidence band is very important to the

decision making process since frequently (as in this case) there are

only a few failures from which the fleet commander must reach a

decision.

The confidence bands were computed using two different methods. The

five and ninety five percent ranks were computed and fit with a

Weibull distribution along with the median ranks. This method

provides the range for all three Welbull parameters i however, the
computation of the ranks and the curve-fitting procedure result in a

substantial computation time. The second method utilized the t

distribution to compute the confidence band for the linear

regression parameters for the curvefit to the median ranks. This

process is much faster; however, we obtain no information for the

Weibull location parameter. This is a significant loss because the

location parameter represents the failure free operating period. The

ability to rapidly generate confidence limits for the available data

is felt to outweigh this loss.
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A SUBSEQUENT INSPECTION INCREASED THE DATA SET TO 181 AIRCRAFT
WITH 12 FAILURES

Subsequent inspection data increased the sample to 181 aircraft

containing 12 aircraft with failures. Again this information was

plotted and Weibull distributions determined for the median, five

percent, and ninety five percent rank points. These curves are shown

alon E with the result obtained by computing the confidence bands for

the linear regression parameters. The two methods compare well,
except at the lower end where the variation in the location

parameter is felt more strongly.
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CUMULATIVE PROBABILITY OF FAILURE FOR SECOND DATA SET

The cumulative probability of failure for the second data set

containing twelve failures is shown. Included on the plot is the 90%
confidence band.

The 90% confidence band is much smaller than that with only six data

points, especially at the high probability of failure, indicating
that the data set now represents the actual behavior of the failure

mechanism to a much higher degree than the original data set. The

influence of the early failure has been reduced by the new data

points, many of which fell between the first failure at 770 hours

and the second failure at 1035 hours in the original set of data.
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AREAS OF CONTINUING EFFORT

We are continuing our effort in several areas. We will implement a

Maximum Likelihood Estimation (MLE) process to determine the Weibull

parameters. An iterative procedure is required; however, our

experience with the MLE process for two-parameter Weibull curvefits

indicates that convergence is very rapid. The linear regression

process we are currently using weighs all the points equally in

their effect on the regression line, whereas the MLE process weighs

the analysis toward the bulk of the data.

The process of projecting cracks to their critical level is

accomplished deterministically from the crack growth curve. The

crack growth process is, in fact, a random process and thus there is

some uncertainty associated with the actual lives at failure.

Inspection data is also treated deterministically. Nondestructive

Evaluation (NDE) techniques have some uncertainty associated with

their ability to detect flaws. The uncertainty, or randomness, of

these two phenomena should be included. This uncertainty is best

addressed using a Monte Carlo technique at the cost of some

additional computation time. The advantage is that we will receive a

better picture of the actual risk.

Our current process does not account for the repair of cracked parts

and the return of the aircraft to service. We are looking to Renewal

Analysis techniques to provide an assessment of such repairs.

Repaired aircraft are of particular interest to fleet commanders in

planning allocation of resources and logistic needs and to project

the maintenance and repair actions required with continued fleet

usage.
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PROBLEM DEFINITION AND CORRESPONDING RESEARCH

The research is focused on automating the evaluation of complex

structural systems, whether for the design of a new system or the

analysis of an existing one, by developing new structural analysis

techniques based on qualitative reasoning. The problem is to identify

and better understand I) the requirements for the automation of design

and 2) the qualitative reasoning associated with the conceptual

development of a complex system. The long-term objective is to develop

an integrated design-risk assessment environment for the evaluation of

complex structural systems. The scope of this short presentation is to

describe the design and cognition components of the research.

Design has received special attention in cognitive science because it

is now identified as a problem solving activity that is different from

other information processing tasks [I]. Before an attempt can be made

to automate design, a thorough understanding of the underlying design

theory and methodology is needed, since the design process is, in many

cases, multi-disciplinary, complex in size and motivation, and uses

various reasoning processes involving different kinds of knowledge in

ways which vary from one context to another. The objective is to unify

all the various types of knowledge under one framework of cognition.

This presentation focuses on the cognitive science framework that we

are using to represent the knowledge aspects associated with the human

mind's abstraction abilities and how we apply it to the engineering

knowledge and engineering reasoning in design.

RESEARCH: EVALUATE THE AUTOMATION OF COMPLEX STRUCTURES

-- APPLICATION TO DESIGN AND ANALYSIS

IPROBLEM TO SOLVE: ] UNDERSTANDING QUALITATIVE REASONING

_I OBJECTIVE: I INTEGRATED TOOL FOR DESIGN AND RISK
ASSESSMENT

PRESENTATION: COGNITIVE ASPECT OF DESIGN

I
DESCRIPTION:

THE MULTIPLE LAYER SEMANTIC NET --

DESCRIPTION OF THE TYPE OF KNOWLEDGE IT
SHOULD HANDLE

f
APPLICATION: I::::::E::::L::::LE°°E

Figure 1
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KNOWLEDGE:PROCESSING OF CONCEPTS

The common denominator among diverse entities such as an overall

complex system, a component or a sub-assembly of that system, and the

design and evaluation processes themselves, is that they can all be

represented by formal concepts which, being associated with the human

mind, can fundamentally encapsulate models of the reality that

surrounds us [2] (percepts and icons). Concepts are organized in

conceptual graphs, semantic nets, and schema or prototypes. Procedures

can also be represented in semantic nets [7].

Different design reasoning procedures could be represented in various

refinements of the same higher-order semantic net which corresponds,

at the highest qualitative level, to deriving the structure for a

device such that the device can meet a specific function.
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CONCEPT8 _ SEMIOTIC PARADIGMS

Each concept associated with a cognitive process has three fundamental

components: A semantic component to describe its function (what it is

for), a syntactic component to describe its structure (how it is put

together), and a pragmatic component to describe how it relates to its

context (what are its behavior and the context in which it is used).

Pearson [3] attributes these components to cognitive systems and calls

such concepts semiotic paradigms.

The physical symbol system [4] and the connection models [5] have the

same components in their paradigms, but vary by the emphasis on the

level of representational abstraction at which they are described.

Computer models of a device and the corresponding knowledge can be

made at various levels of representational abstraction, but they

should always have the three semiotic components so that the knowledge

can indeed be described and propagated in a manner similar to the

actual cognitive process. This will ensure that the full range of

engineering discourse, from the qualitative to the quantitative, will

be modeled by computer descriptions.

Furthermore, all three semiotic components are described by both a

declarative and a procedural statement. The declarative statement

describes "what" is needed in design, and the procedural statement
covers "how" to use it.
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_O_E_ES_UCTURB

It is our contention that components of knowledge used in processes

apparently as different as design and analysis are, in fact, the same.

The description of each component and its processing vary as a

function of the particular requirements of a problem situation, but

the component itself stays the same. We propose that different design

/ analysis reasoning procedures can, in fact, be represented as

different refinements of the same higher-order semantic net. The

various levels of detail required to solve problems correspond to

various levels of representational abstraction. The same can be said

for the representation of the facts in the domain of knowledge:

Functional and structural hierarchies of the components of a complex

system can be described at various levels of abstraction.

We therefore propose the Multiple Layer Semantic Net (MLSN) [6] as the

cognitive knowledge structure which unifies the representation of the

various types of knowledge about facts and reasoning. The MLSN is

conceptually a layered semantic net. The nets of each layer are

isomorphous to one another in that they represent the same engineering

concepts, but their descriptions of the concepts are made at different

levels of abstraction. The descriptions are qualitative toward the top

of the representation and quantitative toward the bottom.

The rest of this presentation describes the cognitive techniques the

MLSN should handle and points out the necessity to provide such a

unified structure.

QUALITATIVE

n

i

I
I

I
I

I
n

i+l

I
I

I
I

I I-- I

/ < /
/ /

\-- /
./

I
I

I
I

IIIIIP'",III,,"
I

QUANTITATIVE

Figure 4

279



MULTI-DIBCIPLIHARY ASPECTS OF THE DOMAIN OF KNOWLEDGE

Most design problems require a combination of knowledge from different

domains. For example, in the design of wood structures [7], wood

science, wood engineering, and structural engineering are combined. In

building design [8], it is architectural, structural, mechanical, and

electrical engineering; in aerospace structures [9], aerodynamics,

structural engineering, and mechanical engineering. In some design

problems, the interaction among the various knowledge domains may be

mostly sequential for the larger components of the process, whereas

some sub-problems could be solved in parallel [i0]. In all cases, a

strong interaction exists among the different sources of knowledge, a

fact which calls for new approaches such as simultaneous engineering

and integrated activities.

The complex structure being designed, e.g., a building, may be

decomposed differently in each one of the knowledge domains and may
have different function hierarchies in these domains. These various

views of the same complex structure can be represented with

corresponding hierarchies in the levels of the MLSN. The hierarchies

of the different domains are interconnected by the appropriate

semantic links, which account for the particular aspects of the

context in which the complex structure is used within each discipline.

An example is the relationship between the structural decomposition

provided by an architect, which becomes the functional decomposition

serving as the starting point for design by a structural engineer.
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DECLARATIVE AND PROCEDURAL DEFINITIONS

Two different kinds of knowledge are used to perform a cognitive

activity: Declarative knowledge and the procedural knowledge.

Declarative knowledge consists of what we know about events, objects,

and the relationships between them. Declarative knowledge is also

referred to as propositional knowledge and can easily be represented

by semantic networks [2, ii]. Procedural knowledge describes how to

perform various activities and the dynamic process of how and why

operations are performed upon the declarative knowledge.

At a higher conceptual level, declarative and procedural descriptions

are part of different knowledge processing skills. According to [12],

we first form some declarative knowledge while learning a task; we

then correct the declarative knowledge in the associative stage to

form some procedural knowledge; in the autonomous stage, these

procedures become highly automated. In familiar problems, experts use

procedural knowledge in a relatively rapid and automatic fashion [13,

14] and in a new and unusual situation they still have to rely on

their declarative knowledge.

Hence we propose that procedural knowledge is used for routine designs

[15], declarative knowledge is used for creative and innovative

designs, and a combination of both is used for design by redesign

[16].
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FROM QUALITATIVE TO QUArEITATIVE, COMPLETE OR PARTIAL ENVISIO_DIENT

The human mind can envision a complex system in its entirety or zero-

in on one part of it. In doing so, it switches from higher levels of

abstraction where the information tends to be more qualitative to

lower levels of abstraction where it is more quantitative [6]. This is

exemplified in the decompositional stage of design in which one

critical component or sub-system is designed in more detail with the

assumption that it will later fit with the rest.

Just as the human mind shifts from qualitative to quantitative

descriptions, so does the design process. A design at a deeper level

of description defines one at a higher level by providing more detail

about the components. This characterization corresponds to the

cognitive process of definition (the reverse of abstraction). It can

also describe the reasons for having to define more precisely the

concepts parametric in nature and includes the procedures to do so.

Modeling the design knowledge in multiple layers is especially

appropriate in routine design [15]: The structures being designed and

their components stay fundamentally the same from one application to

the next. Only the numerical values of the parameters change from one

specialization to another. It is therefore not necessary to abstract

toward the generalized conceptual structure, design after design. This

process corresponds to moving from one level upward, then back down in

the MLSN in a fundamentally qualitative-then-quantitative process.

n

i

n

/
/

QUALITATIVE

/ LONG-SPAN

/ STIFF-SYSTEM /

/ HEAVY-LOADS /

/ /
i-I

/
/

80 FEET < SPAN < 120 FEET

LOW L/D RATIO, HYPERSTATIC
HS20-44 HIGHWAY TRUCK

/
QUANTITATIVE

/
/

ILATERALLY STRESSED BRIDGE:}

SPAN < 50 FEET

WIDTH: 1 TO 3 LANES

LOADS:TRUCKS

SPAN = 24-30, 30-36, 36-42 FEET.

ONE, TWO, OR THREE LANE-BRIDGE

HS-15, HS-20, HS-25 LOADINGS

Figure 7

282



8INUI£TION: DEBIGN_ID EVALUATION

The procedures of design and evaluation are dual of one another in the

following sense: Design consists of creating the structure of a device

that exhibits a specific and desired behavior or that is meant to

serve an intended purpose• Evaluation, on the other hand, consists of

analyzing the behavior of a device in an effort to understand what its

structure must be for it to exhibit that behavior• Both design and

evaluation processes use the same knowledge base of facts and

relations; only the manipulations of the components vary between the

processes, as will be shown later•

Design and evaluation can be viewed as two refinements of the concept

of simulation. Simulation is the attempt to make the composition of a

system exhibit a certain behavior, and depends on the ability to

create the system in the first place, whether it is a preliminary

design alternative or a model of an existing system•

Because of their duality and generalization to the same concept, it is

logical to integrate a design and a risk assessment into the same

program: The structure of a complex system is established to some

degree of completeness during a preliminary design. That structure can

then be investigated to evaluate the risk associated with a potential

failure of some of the components of the structure• The decision to

accept or reject the preliminary design alternative is then made based

on the results of the risk analysis•

DESIGN: BEHAVIOR OR FUNCTION _ STRUCTURE

EVALUATION: STRUCTURE = BEHAVIOR AND/OR FUNCTION

.'. DESIGN AND EVALUATION ARE DUAL ON A SEMIOTIC BASIS

CONSEQUENCES: • GENERALIZATION OF BOTH TO SIMULATION

• INTEGRATION OF PRELIMINARY DESIGN AND

RISK ASSESSMENT

PRELIMINARY

DESIGN

PRELIMINARY

STRUCTURE

no

ACCEPTABLE
BEHAVIOR /

FUNCTION ?

I

I
_4 PRELIMINARY

I

Figure 8
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FUNDPJtEr_L DESIG'N BTR_TEGIE8 AND THEIR COGNITIVE EQUIVaLEnTS

Every design involves four steps: Problem formulation, conceptual

design, embodiment design, and final design• The first step of the

conceptual design establishes the functional decomposition of a

complex system and its components. This decomposition corresponds to

the cognitive processes of I) specialization of a concept into an

instance, and 2) individuation of the concept into sub-components.

The second step of the conceptual design is the design synthesis. This

assembles some components into a more complex structural hierarchy

which corresponds to the earlier functional decomposition• The

corresponding cognitive process is the aggregation of concepts.

Some basic design strategies applicable during the conceptual design

are the routine design, design by redesign, innovative design, and

creative design. Any combination of these can lead to even more

complex strategies.

Design by redesign first generalizes a concept to a higher-order

class-concept and then specializes to another instance• Routine design

first abstracts to a more qualitative model of the same structure and

redefines it into another more quantitative model. Both processes are

sketched on the MLSN below. As already mentioned, procedural knowledge

is used in routine design, declarative knowledge in creative design,

and a combination of both in innovative design and design by redesign•

/
/
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i+l

/
/

/
/

/

n

i

/
/

/

/
/

/
/

I
I

I
I

/
/

/
/

/

/
/

Cognitive processes:

g' to g: abstraction

g to g': definition

s to g: generalization

g to s: specialization

r & s into g: aggregation

g in r & s: individuation

Design strategies and the MLSN:

Routine design: path from sl up to s, then down to s2

• Design by redesign: path sl to g', then to s2

Figure 9
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DESIGN PROCEDUREfl AND THE SEMIOTIC REI.;_TIONSHIPB

The reasoning procedures of the design problem solving process the

knowledge among the components of a semiotic device, either by

deriving one semiotic component from another inside one device, or by

comparing similar components between two devices. There are six

possible relationships among the three semiotic components of a

device, all used either in design or analysis.

The FUNCTION-to-STRUCTURE mapping (i.e., deriving the structure from

the function) and the BEHAVIOR-to-STRUCTURE mapping take place in the

design synthesis. They use teleological reasoning. The STRUCTURE-to-

FUNCTION and the STRUCTURE-to-BEHAVIOR mappings are analysis

processes. They use causal reasoning.

Except for the mapping from structure to behavior, all mappings are of

the type one to many. For example, several functions can be met by one

structure, just as multiple structures could serve one function. A

given structure can only generate one behavior at a time, with a fixed

context.

The FUNCTION-to-BEHAVIOR mapping can be part of the innovative design

which consists of finding new applications to an existing device. This

mapping can be one to many. Finally, the BEHAVIOR-to-FUNCTION mapping

corresponds to a qualitative analysis process and is a one to one

mapping if considered in one context.

I SEMIOTIC RELATIONSHIPS I

I SYNTACTIC I

COMPONENT

STRUCTURE

SEMANTIC

COMPONENT

FUNCTION

"4

analysls

PRAGMATIC

._- COMPONENT

BEHAVIOR &

CONTEXT

design

Figure i0
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DEBIGN 8TRATF_IEB AND THE SEMIOTIC RELATIONSHIP8

The design process is based at the fundamental level on causal and

teleological reasoning. Causal reasoning processes "what it is" in

order to derive "what it does". It is applied, for example, in a

backward chaining manner in the FUNCTION-TO-BEHAVIOR mapping of an

innovative design where a new usage is identified for a device.

Teleological reasoning, by contrast, processes "what it is for" to

derive "what it should be". It is applied, for example, in the
traditional derivation of the STRUCTURE from the FUNCTION.

At a higher level, some design strategies are Design by analogy,

which compares corresponding components of different devices; design

by constraint satisfaction, which builds up information requirements

from the context for the function and structure of a device; and

design by analysis, as in the innovative design process mentioned

above. In case-based designs as in design by analogy, all

transformations could be used [17].

Even higher order design strategies still manipulate the semiotic

components. Routine design involves transformations of a structure

from one instance into another one. Design by redesign involves

iterations on the transformations between the function and/or the

behavior and the structure. In all multidisciplinary designs,

structures of one domain are functions for another. Through the design

process, the structures of the second domain finish completing the

description of the initial structures.

I REASONING, PROCESSES, AND TYPES OF DESIGN ]

I REASONING: I

PROCESSES: I

TYPES:

CAUSAL

TELEOLOGICAL

DESIGN BY ANALOGY, CASE-BASED DESIGN

CONSTRAINT SATISFACTION

DESIGN BY ANALYSIS

ROUTINE DESIGN

DESIGN BY REDESIGN

INNOVATIVE DESIGN

CREATIVE DESIGN

Figure ii
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Bray

The research in automating the design and evaluation of complex systems

led to the formulation of a cognitive knowledge structure developed

to facilitate the acquisition and representation of knowledge at

multiple levels of abstraction.

The knowledge structure, the multiple layer semantic nets (MLSN),

consists of isomorphous semantic nets describing the relationships

among concepts viewed as semiotic paradigms. The components of the

semiotic paradigms (structure, function, behavior and context) are

described from qualitative levels to quantitative levels by both

declarative and procedural descriptions.

The MLSN was described here in the perpective of the design process

and the design strategies it should handle. It is also applied in

another component of the research to investigate and develop

techniques, based on qualitative reasoning, to evaluate complex

systems.

The MLSN is now used to guide the development of a computer program

which will perform both the design and the risk assessment for complex

structural systems.

RESEARCH:

REPRESENTATION OF KNOWLEDGE ABOUT COMPLEX SYSTEMS

REASONING AT MULTIPLE LEVELS OF ABSTRACTIONS

DEVELOPMENT:J

MULTIPLE LAYER SEMANTIC NETS

REPRESENTATION OF KNOWLEDGE

REPRESENTATION OF REASONING PROCESSES

APPLICATION:[

MODELS OF STRATEGIES OF DESIGN

MODELS OF COMPLEX SYSTEMS

Figure 12

287



REFEREHCE5

i. Goel, V. & P. Pirolli; 1989; Motivating the Notion of Generic

Design within Information Processing Theory: The Design Problem

Space; AI Magazine, Spring 1989, 18-36.

2. Sowa, J.F. 1984; Conceptual Structures; Addison-Wesley.

3. Pearson, C. 1982; The Cognitive Sciences: A Semiotic Paradigm; in

Languages, Minds, and Brains; Ed. by T.W. Thomas & R.J. Scholes;

Erlbaum, Pub.

4. Newell, A. 1980; Physical Symbol System; Cognitive Science, Vol

4.

5. Rumelhart, D.E, J.L. McClelland, and the PDP Research Group;

1986; Parallel-Distributed Processing - Explorations in the

Micro-Structure of Cognition; Vol. 1 & 2; The MIT Press.

6. Franck, B.M. 1989a; Qualitative Engineering at Various Levels of

Conception for Design and Evaluation of Structures; 2nd

Conference on Industrial and Engineering Applications of

Artificial Intelligence and Expert Systems; ACM Press; Vol I,

441-448.

7. Franck, B.M. 1989b; Qualitative Engineering of Wood Structures;

6th Conference on Computing in Civil Engineering; ASCE, 875-882.

8. Sriram, D. 1986; DESTINY: A Model for Integrated Structural

Design; International Journal of AI in Engineering;

Computational Mechanics Publications; Vol.l, No. 2.

9. Rogers, J.L. 1989a; A Knowledge-Based Tool for Multilevel

Decomposition of a Complex Design Problem; NASA Technical Paper

2903; NASA Langley Research Center.

i0. Rogers, J.L. 1989b; The Potential Application of the Blackboard

Model of Problem Solving to Multi-Disciplinary Design; NASA

Technical Memorandum No. 101633; NASA Langley Research Center.

ii. Gordon, S.E. 1989; Theory and Methods for Knowledge Acquisition;

AI Applications in Natural Resource Management; Vol. 3, No. 3.

12. Anderson, J. 1987; Skill Acquisition: Compilation of Weak- Method

Problem Solutions; Psychological Review 92(2):192-210.

13. Anderson, J. 1985; Cognitive Psychology and Its Implications (2nd

Edition); W.H. Freeman and Company; New York.

14. Newell, A. & H. Simon; 1972; Human Problem Solving; Prentice-

Hall.

15. Brown, D.C., & B. Chandrasekaran; 1985; Knowledge and Control for

Design Problem Solving; Technical Report, Laboratory of

Artificial Intelligence Research; Department of Computer and

Information Science; The Ohio State University.

16. Dixon, J.R., & M.K. Simmons. 1984; Expert Systems for Engineering

Design: Standard V-Belt Design as an Example of the Design-

Evaluation-Redesign Architecture; 1984 ASME Computers in

Engineering Conference.

17. Holyoak, K.J., & P Thagard. 1989; Analogical Mapping by

Constraint Satisfaction; Cognitive Science 13, 295-355.

288



Report Documentation PageNational Aeronautics and

Space Adrnin_tration

1. Report No.

NASA CP-3064

4. Title and Subtitle

2. Government Accession No.

Research in Structures, Structural Dynamics and Materials - 1990

Author(s)

Jean-Frangois M. Barthelemy and Ahmed K. Noor, Compilers

3. Recipient's Catalog No.

5. Report Date

March 1990

6. Performing Organization Code

8. Performing Organization Report No.

L-16735

Performing Organization Name and Address

NASA Langley Research Center
Hampton, Virginia 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001

10. Work Unit No.

505-63-01-07

11. Contract or Grant No.

13. Type of Report and Period Covered

Conference Publication

14. Sponsoring Agency Code

15. Supplementary Notes

Jean-Francois M. Barthelemy - NASA Langley Research Center, Hampton, Virginia

Ahmed K. Noor - George Washington University - Joint Institute for the Advancement of Flight
Sciences - NASA Langley Research Center,

Hampton, Virginia
16. Abstract

The AIAA/ASME/ASCE/AHS/ASC 31st Structures, Structural Dynamics and Materials (SDM)

Conference was held on April 2-4, 1990 in Long Beach, California. This publication is a
compilation of presentations of the work-in-progress sessions and does not contain papers from
the regular sessions since those papers are published by AIAA in the conference proceedings.

17. Key Words (Suggested by Author(s))

SDM Conference, Work-in-Progress
Structures

Structural Dynamics
Materials

18. Distribution Statement

Unclassified - Unlimited

Subject Category 39

19. Security Classif. (o, this report) 120. Security Classif. (o, this page) I 21. No. of pages

Unclassified ] Unclassified [ 292

NASA FORM 1626 OCT 86 For sale by the National Information Service, Springfield, Virginia 22161-2171

22. Price
A13

NASA Langley, 1990








